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controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.5 Anti-synchronization of coupled Sprott system for chattering free

controller in presence of disturbance with M=2 . . . . . . . . . . . 141

6.6 Anti-synchronization of coupled Rössler system for chattering free
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Chapter 1

Introduction

1.1 Brief Literature Survey

In the literature on dynamical systems, substantial attention has

been paid to the problem of control and synchronization for non-

linear dynamical systems. In 1990, E Ott, C Grebogi and JA Yorke

[58], published a pioneering work on control of chaos. Their method

(now famously known as OGY method) achieves the control objec-

tive by making small, carefully chosen time-dependent perturbations

of one of the parameters of the system. They crucially used a very

important property of the phase space of a chaotic system. Every

arbitrary neighbourhood of a chaotic attractor contains periodic at-

tractors. Hence arbitrary small excitations can drive a system from

a chaotic attractor to a periodic one. Thus, through proper choice of

a sequence of excitations, it is possible to control the chaotic system.

In 1992, direct adaptive control process was described by RM San-

ner and JE Slotine for Gaussian networks[74]. In 1993, W Gao and

JC Hung[21] presented the variable structure control for nonlinear

dynamical systems. In 1995, EA Jackson and I Grosu[30] proposed

8



an open-plus-closed-loop (OPCL) control for complex dynamical sys-

tems. EA Misawa (1997)[48] introduced discrete time sliding mode

control (SMC) for nonlinear systems with unmatched uncertainties

and uncertain control vector. Interestingly, in that year, K Jezernik,

M Rodic, R Safaric and B Curk[32] presented a paper on the sliding

mode control for neural network. In 1998, C Liqun and L Yanzhu[44],

applied state space exact linearization (SSEL) method for controlling

non-linear dynamical system. They applied this technique to control

the famous Lorenz dynamical system [45]. In the next year(1999),

WH Chen, DJ Ballance, PJ Gawthrop and J O’Reilly[15] introduced

a useful controller for a nonlinear dynamics, known as PID predictive

controller.

A promising tactics for attenuation of chaos is synchronization. In

1990, Pecora and Carroll[65] presented a pioneering work on chaos

synchronization which received much attention due to its importance

in the theory of non-linear dynamics and its practical applications in

electronic circuits, chemical and biological systems and secure com-

munications. They used a common signal to connect two chaotic

systems. They also applied this method to construct a real set of

chaotic synchronizing circuits. The type of synchronization they had

worked on is now known as complete synchronization. Kocarev and

Parlitz [38], in 1996, published a paper on general synchronization

(GS). LY Cao and YC Lai (1998) [14] discussed antiphase synchro-

nization (AS) in chaotic systems. Long-term anticipatory synchro-

nization of a chaotic dynamical systems was presented by HU Voss

(2001)[86]. In that year, HN Agiza and MT Yassen[1] used active

control method to synchronize Rössler and Chen chaotic dynamical

9



systems. Lag synchronization (LS) in coupled Rössler oscillators

was described in 2002 by M Zhan, GW Wei and CH Lai [94]. L

Chen(2002) [16] applied adaptive control method to synchronize un-

certain unified chaotic system. Next year, in 2003, Y Yongguang

and Z Suachun[92] gave a control technique for uncertain Lu system

using backstepping design. In 2004, a number of works had been

published on adaptive control method for synchronization of chaotic

systems. J Lu, X Wu, X Han and J Lu[46] did the same on unified

chaotic system. JH Park[64](2005) discussed the control of chaotic

dynamical systems via nonlinear feedback control. In this year, MT

Yassen [91] discussed chaos synchronization for two different chaotic

systems using active control method. In 2006, DV Senthilkumar, M

Lakshmanan and J Kurths [75] demonstrated the phase synchroniza-

tion (PS) process for a time delayed system. D Ghosh(2009) [23]

discussed the stability criteria and projective synchronization for the

multiple delay Rössler system.

The control techniques were not confined only to mathematics.

Its effect had been scattered in several areas. In 2005, NM Carusu

and V Balan[13], had together presented a paper for controlling a

dynamical systems with applications in biology. V Balan and CS

Stamin [8] applied the nonlinear feedback control method on a bio-

logical system in 2006. They had tried to control neural excitation

processes. In 2007, Y Sun and J Cao [81] used adaptive control

method to synchronize two different noise-purturbed chaotic systems

with fully unknown parameters. In the same year, S Poria and A

Tarai[68], published a paper on adaptive synchronization of two cou-

pled chaotic neuronal systems. V Balan and CS Stamin(2007) worked

10



on a paper on Kaldor’s model[6] of macro-economic business cycles.

They had chosen the state space exact linearization(SSEL) method

to stabilize the Kaldor model. They examined the controllability of

the non-linear dynamical system by using the parameter variation

and the control duration. In the next year, they applied the state

space exact linearization(SSEL) method to construct a scheme for

non-linear feedback control law in SODE economic model [7]. A

simple adaptive controller was described by R Guo(2008) [26] to ob-

tain chaos and hyperchaos synchronization. In this year (2008), D

Ghosh, AR Chowdhury and P Saha [22], chose Rössler dynamical

system with multiple delay parameters to analyze the bifurcation be-

haviour and to control the chaotic nature of the Rössler dynamical

system. S Nikolov, JV Gonzalez, V Kotev, O Wolkenhauer and V

Petrov(2008) [54] investigated the properties of Jacob-Monob dynam-

ical model in presence of time delays and also described the control

of the beta-galactosidase synthesis by the DNA-binding protein in a

bacterium which can cause severe food poisoning. Hybrid feedback

control scheme had been used by LX Yang, YD Chu, JG Zhang, XF

Li and YX Chang (2009)[90] to attain chaos synchronization in au-

tonomous chaotic system. EM Shahverdiev and KA Shore(2009) [76]

studied chaos synchronization on laser diodes by introducing multi-

ple optical feedback time delay parameters. In 2010, JZ Li and YN

Zhang[43] suggested a force control technique for wheeled inverted

pendulum. YF Xu, B Jiang, G Tao and Z Gao(2011)[88] proposed

fault tolerant control for a class of nonlinear systems with application

to near space vehicle. Tracking control method had been used in 2011

by M Chen, SS Ge and B Ren[17] to control uncertain multi-input
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and multi-output (MIMO) nonlinear systems with input saturation.

In this year, application of adaptive control method was discussed

by ID Landau, R Lozano, M M’Saad and A Karimi [39]. In the fol-

lowing year, S Nikolov, JV Gonzalez, M Nenov and O Wolkenhauer

[55], worked with microRNA dynamical model having two delay pa-

rameters. This work is very helpful in understanding the correlation

between mathematical sciences and biological sciences. Nikolov and

his co-workers, discussed the effect of delay parameters on the miRNA

dynamical system. In presence of delay parameters, the dynamical

system would become unstable. By utilising this fact, they had car-

ried out the bifurcation analysis for the miRNA dynamical model us-

ing Hopf-bifurcation theorem. V Balan, C Udriste and I Tevy(2012),

published an important work on the study of the sub-Riemannian ge-

ometry and optimal control[9] of Lorenz induced distributions. The

article contained vital results on single-time optimal control problems

and the optimal control problem of non-holonomic geodesics, illus-

trated for Lorenz system. In 2013, S Vaidyanathan [84] designed a

sliding mode controller to attain anti-synchronization in hyperchaotic

Lu system. In this year, S Nikolov [56] used three delay parameters

on a dynamical system and studied the stability and Andronov-Hopf

bifurcation of the system. He also studied the complex behaviour of

the miRNA model with three time delay parameters in his paper [57]

in 2013.

In engineering and mathematics, controlling the behaviour of dy-

namical systems is a very active research area nowadays. In our daily

life, almost everything needs to be controlled. For example, regulator

of a ceiling fan, cooking time controller in microwave, temperature

12



controller of refrigerator etc. are very simple yet indispensable con-

trollers in our life. For more clarity, consider an electric cloth drier.

To dry our wet clothes, we have to schedule or fix a time. Now,

without any controller, there is a possibility that the wet cloth may

dry before the scheduled time and the drier may burn the cloth if

operated for the remaining time. There exists another possibility.

The wet cloth may not dry properly within the scheduled time. If

the electric cloth drier has a controller, it will increase the tempera-

ture when the clothes are too wet and the controller will decrease the

temperature when the clothes are nearly dry (otherwise it may burn

the clothes!). Hence, this simple example appropriately highlights

that controllers play an important role in our daily lives.

In chaotic nonlinear dynamics, controllers perform a very signif-

icant function similar to our previously discussed event from daily

life. In control theory, it is very essential to establish the appropri-

ate criteria for the effectiveness of the control system. Usually, the

control term is added to one of the equations of the dynamical sys-

tem. Synchronization of two systems is another promising way to

control the chaotic nature of non-linear dynamical systems. In this

thesis, our aim will be to investigate synchronization of same and dif-

ferent dynamical systems in detail and work towards the concept of

generalized synchronization, which is useful for a myriad of practical

purposes, like secret communications, cryptography and robotics.

1.2 Non-Linear Dynamics

A physical quantity (position, momentum, phase, electric field etc.)

that depends on time represents Dynamical quantity. The set of
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dynamical quantities that evolves together under a coupled set of

equations or maps defined as Dynamical system. The dynamical sys-

tem replicas anything that moves in time. Dynamical system has two

types, linear and non-linear. Any dynamical system can be written

in vector form as

ẋ = f(x, t) (1.2.1)

where x = (x1, x2, x3, ..., xn)
T ∈ Rn and f : Rn → Rn & t ≥ 0.

In expanded form, the system of equations is :

ẋ1 = f1(x1, x2, x3, ..., xn, t)

ẋ2 = f2(x1, x2, x3, ..., xn, t)
...

ẋn = fn(x1, x2, x3, ..., xn, t)

(1.2.2)

where dots represent the derivative with respect to time.

For example, we consider the differential equation of a simple har-

monic oscillator as

mẍ = −kx (1.2.3)

Let x1 = x and x2 = ẋ.

Hence, equation (1.2.3) can be written in the form of equation(1.2.1)

as,

ẋ1 = x2

ẋ2 = −
(
k

m

)
x1

(1.2.4)

Since the variable terms to the right hand side of (1.2.4) are of

degree one, the system of equations (1.2.4) is said to be linear dy-

namical system. Otherwise, it is said to be non-linear dynamical

system.
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For example, we consider the velocity v(t) of a skydiver falling to

the ground is governed by

mv̇ = mg − kv2 (1.2.5)

where m is the mass of the skydiver, g is the acceleration due to

gravity and k > 0 is a constant related to amount of air resistance

[80].

By taking x1 = x & x2 = ẋ, equation (1.2.5) can be written as

ẋ1 = x2

ẋ2 = g −
(
k

m

)
x22

 (1.2.6)

where v = ẋ = dx
dt

This is the example of an autonomous non-linear dynamical sys-

tem. Here, the term autonomous is used as the system (1.2.6) does

not depend on the time explicitly.

Now, if we solve the system of equation(1.2.6) with m = 260, g =

32.2, k = 10 & (x1, x2) = (30000, 250), we have a point whose co-

ordinates are (x1(t), x2(t)) and the locus of this point represents a

curve in a phase space which is represented by figure (1.1) and the

curve ABC is known as a trajectory.

We will now discuss fixed points of a system. For this purpose, we

have to understand the flow of a fluid on a line. If we take the line as

x-axis with velocity along y-axis, then the following cases may arise

:

• the fluid flows to the left if ẋ < 0

• the fluid flows to the right if ẋ > 0

15



• the fluid does not flow if ẋ = 0

For ẋ = 0 , we get the fixed point or the critical point x∗ of the

system ẋ = f(x), i.e. f(x∗) = 0.

There exists two types of fixed point, stable (attractor) and un-

stable (repeller) [80]. A fixed point is called stable point if the points

near it are attracted towards the fixed point and it is called unstable

point if the neighbouring points are repelled as the time increases.

For example, we consider a very simple differential equation

ẋ = x− x3 (1.2.7)

In this example, for ẋ = 0, we have, x∗ = 0, 1,−1 which are the fixed

points. From figure (1.2), using the flow on a line, we can say that

x∗ = 1 & x∗ = −1 are the stable fixed points and x∗ = 0 is the

unstable fixed point.

From an analytic point of view, the following definitions may be

proposed.

Consider B(xo, ϵ) = {x ∈ Rn : ∥x− xo∥ < ϵ} and B(xo, ϵ) = {x ∈
Rn : ∥x − xo∥ ≤ ϵ}. Then, S(xo, ϵ) is the boundary of both B(xo, ϵ)

and B(xo, ϵ), where S(xo, ϵ) = {x ∈ Rn : ∥x− xo∥ = ϵ}.
According to the Lyapunov stability theory[70, 80], a fixed point

(sometimes called an equilibrium point) x∗ of a non-linear system is

said to be stable, if ∀ ϵ > 0, ∃ δ > 0 such that

xo ∈ B(x∗, δ)⇒ τ(t) ∈ B(x∗, ϵ) ∀ t ≥ 0

where τ(t) is the unique solution to the non-linear system ẋ = f(x(t))

that corresponds to x(0) = xo.
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The fixed point x∗ is said to be asymptotically stable, if ∀ ϵ > 0,

∃ δ > 0 such that

xo ∈ B(x∗, δ)⇒

τ(t) ∈ B(x∗, ϵ) ∀ t ≥ 0

lim
t→+∞

τ(t) = x∗

From these definitions, one can easily conclude that asymptotic sta-

bility implies stability.

In the phase space, dimension [3] of the attracting set is defined

by

d = lim
ϵ→0

lnN(ϵ)

ln(1ϵ )
, when the limit exists.

Here, N(ϵ), which is proportional to 1
ϵd

, represents the number of

boxes of edge length ϵ (arbitrarily small) required to cover the at-

tracting set.

If N(ϵ) = 1, then d = 0. In this case, the attracting set represents

a point attractor, shown by figure (1.3) which is obtained from the

system of differential equations as given below:

ẋ = y

ẏ = −2x− 3y

}
(1.2.8)

If N(ϵ) ∼ 1
ϵ , then d = 1. In this case, the attracting set represents

a limit cycle attractor, shown by figure (1.4) which is obtained from

the system of differential equations [80] as given below:

ẋ = x− y − x(x2 + 5y2)

ẏ = x+ y − y(x2 + y2)

}
(1.2.9)

If d = 2, 3, ... , the curves represent a tori. But there is a possibility

that the dimension d may not always be an integer. It might be
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fractional. In that case, the attracting set is said to have fractal

dimension and the attractor is called a strange attractor. In physical

model, Lorenz first showed the existence of strange attractors.

In particular, if d lies between 2 and 3, the strange attractor be-

haves like a chaotic nature of a dynamical system with n(≥ 3) vari-

ables. Thus, the strange attractors are often called chaotic attractors.

Chaos in a dynamical system is generally shown by the complicated

and apparently tangled behavior [78] of the attractor. It can’t be pe-

riodic. It is further characterized by strong dependence on the initial

conditions.

1.3 Chaotic Dynamical System

To understand the chaotic dynamics, we have to roll back to the year

of 1963, when Lorenz [45] introduced a simple chaotic dynamical

system of equations containing three ordinary non-linear differential

equations with three state variables that had altogether seven terms

with two quadratic non-linear terms. This system displays variety

of periodic and chaotic solutions depending on values of one or more

system parameters [63]. After this pioneering discovery of Lorenz,

much efforts have been applied towards identifying and understand-

ing the chaotic dynamics. Rössler (1976)[71], 13 years later, described

a three dimensional model which had chaotic bounded solution with

only one non-linear term. In 1977, oscillations and chaos in a physio-

logical control system was discussed by MC Mackey and L Glass [47].

In 1988, L Glass, A Beuter and D Larocque [24], presented a very

deep work on physiological control systems, discussing time-delays,

oscillations and chaos theory. They added variable time delays to
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the feedback circuit to show the complex rhythms of finger displace-

ment. In investigating problems of nature, often partial differential

equations governing physical phenomena are approximated by a set of

ordinary differential equations, mostly by truncation method. The

truncated system of ordinary differential equations is termed gen-

erally as a low-order system. For example, S Panchev (1991)[61]

constructed such a low order system from the non-linear boundary

layer equations for stratified flows in the atmosphere. In 1992, S

Panchev[62] paid attention to the chaotic and deterministic behavior

of the non-linear dynamical systems and their applications to prac-

tical problems. For this reason, he had chosen the geo-physical fluid

dynamics. In 1994, Sprott[79] made a rigorous computer search and

discovered a set of nineteen simple distinct chaotic dynamical systems

popularly known as Sprott’s model A to S.

To illustrate the dynamics of chaos, we have drawn a phase por-

trait in figure (1.5) of the Sprott D system [79] which is given by

ẋ = −y

ẏ = x+ z

ż = xz + 3y2

 (1.3.10)

1.4 Control and Synchronization of Chaos

It is generally known that non-linear dynamical systems which are

capable of generating chaos are not exactly solvable. Our aim here

will be to choose such systems and use analytical tools to extract

useful information from them. Stability analysis and study of control
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are very essential from both mathematical and physical point of view.

For stability analysis of the problem, generally, following methods are

generally adopted :

(i) Routh-Hurwitz criteria (Local stability)

(ii) Lyapunov’s theorem (Global stability)

For any non-linear system ẋ = ϕ(x), where x ∈ Rn, ϕ : Rn → Rn,

there exists a linear system ẏ = Ay, where y ∈ Rn and A is Jacobian

matrix obtained from ϕ(x) at the critical point of the system.

According to Hartman-Grobman theorem[80], the behaviour of the

non-linear system near the critical point is qualitatively the same

as the behaviour of the corresponding linear system if all the eigen

values of A have non-zero real part.
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Let λ be an eigen value of the matrix A. Then, the characteristic

equation of A in λ can be written as

λn + a1λ
n−1 + a2λ

n−2 + a3λ
n−3 + ...+ an−1λ+ an = 0,

where all ai ∈ R , i = 1, 2, 3, ..., n.

Now, Routh-Hurwitz criteria [19] states that the eigen values of A

have negative real parts, which implies the stability of the dynamical

system, if and only if

For n = 2, ai > 0, i = 1, 2.

For n = 3, ai > 0, i = 1, 2, 3 and a1a2 > a3

For n = 4, ai > 0, i = 1, 2, 3, 4 and a1a2a3 > a23 + a21a4

For n = 5, ai > 0, i = 1, 2, 3, 4, 5 and a1a2a3 > a23 + a21a4

& (a1a4 − a5)(a1a2a3 − a23 − a21a4) > a5(a1a2 − a3)2 + a1a
2
5

and so on.

Lyapunov’s first and second theorems [40] give sufficient condi-

tions for global stability and global asymptotic stability respectively.

From the point of view of applications, these theorems concern the

construction of a scalar function V(x) (known as Lyapunov function)

which in relation to the system have certain properties. Here, x repre-

sents the state vector. If V (0) = 0 and V (x) > 0 for x ̸= 0, the scalar

function V (x) is said to be positive definite and it is negative definite

if the negative of this function is positive definite. Lyapunov’s theo-

rems state that if V (x) is positive definite and V̇ (x) ≤ 0 for x ̸= 0,

then the equilibrium state is stable. In addition, if V̇ (x) < 0 for

x ̸= 0 and V̇ (0) = 0, then the equilibrium state is asymptotically

stable. Here, V̇ (x) < 0 for x ̸= 0 implies that the system is dis-

sipative. The equilibrium state is globally asymptotically stable at
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the origin if V (x) is positive definite, V̇ (x) is negative definite and

V (x)→∞ as ||x|| → ∞.

Control analysis of the dynamical system is of considerable im-

portance and in particular, it is very essential to establish the ap-

propriate criteria for the effective control of the system. Control

analysis of the dynamical systems of some problems of applied in-

terest like those of Biology, Bio-Physics would be of great interest.

In this thesis, we will investigate the controller for the non-linear

chaotic dynamical systems using different types of control methods.

The Routh-Hurwitz criteria and Lyapunov stability theorems will be

used for these purpose.

Synchronization is a process of coupling of two or more chaotic

dynamical systems, whereby they are found to acquire a tendency

to follow closely related motion. Chaos synchronization in dynami-

cal systems is actually a method of controlling chaos. Synchroniza-

tion between two systems can broadly be classified into the following

types:

(i) Complete Synchronization (CS): This is the simplest type

of synchronization, that happens for two identical diffusively

coupled chaotic systems. It is also known as identical syn-

chronization. If we consider x = (x1, x2, x3, ..., xn) and y =

(y1, y2, y3, ..., yn) as the state variables of the coupled (drive-

response) systems, then the error term e is defined as ei = xi−yi,
i = 1, 2, 3, .., n, where e = (e1, e2, e3, ..., en). Therefore, Complete

Synchronization is achieved when |xi−yi| → 0 as the time t tends

to infinity. This synchronization can be achieved when the cou-

pling is diffusive, that is, the coupling is a function of (x − y).
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The synchronization manifold in CS is S = {(x, y) : y = x}.

(ii) Anti Synchronization (AS): In this case, the error term e

is defined as e = x + y, where x(∈ Rn) and y(∈ Rn) denote

the states of the drive and the response system respectively. As

t→∞, if the error term e goes to zero, then the synchronization

state is said to be achieved in the sense of Anti Synchronization.

The synchronization manifold in this case is S = {(x, y) : y =

−x}.

(iii) Generalized Synchronization (GS): Let us consider the cou-

pled pair of systems

ẋ = ϕ(x) : Drive system

ẏ = ψ(y, ρ(x)) : Response system

where x(∈ Rn) and y(∈ Rm). Such a coupled pair of systems

is said to possess Generalized Synchronization provided there

exists a transformation η : Rn → Rm, a manifold Λ = {(x, y) :
y = η(x)} and a set Γ ⊆ Rn × Rm with Λ ⊆ Γ such that

all trajectories of the coupled system starting from the basin Γ

converges to Λ as t → ∞. The set Λ = {(x, y) : y = η(x)} is

known as the synchronization manifold.

If η equals I (I is identity transformation), then the generalized

synchronization coincides with Complete Synchronization. If

η equals −I, then the generalized synchronization coincides with

Anti Synchronization.

(iv) Phase Synchronization (PS): This type of synchronization

occurs when the synchronization manifold is defined by the re-
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lation nϕ1(t)−mϕ2(t) = constant, where ϕ1(t) and ϕ2(t) are the

phases of the two coupled oscillators andm,n ∈ N = {0, 1, 2, ...}.
This requires the phases of the oscillators to bear a definite re-

lationship while their amplitudes may be different.

(v) Lag Synchronization (LS): This type of synchronization is

also known as delay synchronization. If we consider τ as the time

delay parameter, then the two coupled chaotic oscillators are in

Lag synchronization if the synchronization manifold is defined

by S = {(x, y) : y(t) = x(t − τ)}, where x = (x1, x2, x3, ..., xn)

and y = (y1, y2, y3, ..., yn) denotes the drive and the response sys-

tems/oscillators. In Lag synchronization, the delay parameter τ

may be constant or time dependent.

Depending on the nature of coupling [28] that connects the two

systems X and Y with X ∈ Rn and Y ∈ Rm, the synchronization

methods can further be classified into three types.

Formally a (n+m) dimensional dynamical system is said to be

(1) Decoupled if it can be decomposed into two dynamical system

of the form

Ẋ = f(X), Ẏ = g(Y )

(2) Unidirectionally coupled if it can be decomposed into two

dynamical system of the form

Ẋ = f(X), Ẏ = g(Y ) + k(X,Y )
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(3) Bidirectionally coupled if it can be decomposed into two dy-

namical system of the form

Ẋ = f(X) + k1(X,Y ), Ẏ = g(Y ) + k2(X,Y )

where f, g, k, k1, k2 are all vector valued functions of X and/or Y .

For example, consider the Shimizu-Morioka [29] system as the

driver system given below:

ẋ = y

ẏ = x− α1y − xz

ż = −β1z + x2

 where α1 = 0.799 & β1 = 0.54 (1.4.11)

We now consider the mismatched Shimizu-Morioka system as the

response system given below:

ẋ = y

ẏ = x− α2y − xz

ż = −β2z + x2

 where α2 = 0.85 & β2 = 0.6 (1.4.12)

Here, figure (1.6) represents the graph of the driver system and re-

sponse system with respect to time. The red vertical line shows the

difference between the un-coupled Shimizu-Morioka systems (1.4.11)

and (1.4.12). The figures clearly show that the trajectories of the

respective systems do not bear any ’regular’ relationship with each

other. The difference varies erratically. However, it will be observed

later in the thesis that such irregular behaviour gives way to extreme

regularity and globally stable asymptotic relationship between the

two chaotic systems when they are coupled properly. This magi-

cal appearance of order from extreme disorder is the beauty of the

enigma that we call synchronization.
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1.5 Structure of the Thesis

Our aim in this thesis is to analyze the behaviour of chaotic

systems and to study the methods of chaos control and chaos syn-

chronization phenomenon.

Chapter 2, presents the stability and control analysis of chaotic

dynamical system. Two chaotic models have been considered for

the discussion. Linear feedback control strategy is used for stabiliz-

ing the unstable critical points and deriving the necessary analytical

conditions.

In chapter 3, study of non-linear chaotic dynamical system is per-

formed after converting it into a linear controllable dynamical system

using state space exact linearization(SSEL) method.

Chapter 4, presents the control technique as discussed in chapter 2

on a biological system. It is a theoretical study. We have presented a

modified minimal model for glucose and insulin kinetics model. The

model proposed here is a smooth approximation of the original non-

smooth minimal model. The dynamical properties like dissipativity,

existence of equilibrium and stability of the system at the equilibrium

points are investigated. A linear feedback based control strategy is

studied to control the blood glucose level in the situation where the

physical system fails to maintain the blood glucose level automati-

cally. A critical control parameter value kc is determined in terms of

the system parameters. Extensive numerical simulation is performed

with different sets of parameter values. Assuming different values

for the feedback gain parameter, ranges of physiological parameter α

are determined where the feedback gain is sufficient to stabilize the

system.
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Two types of control strategies for complete synchronization have

been discussed in chapter 5. For chaos synchronization between two

coupled identical chaotic Sprott system L, hybrid and tracking con-

trol based strategies are adopted.

Chapter 6, describes a sliding mode control strategy-based scheme

for achieving anti-synchronization between two coupled nonlinear

chaotic system. A sliding mode control input and a nonlinear cou-

pling function are designed using a linear sliding surface that syn-

chronizes the systems antiphase. Here, we have established finite-

time convergence of the method. The controller is also robust to all

forms of bounded perturbations and this robustness can be easily

achieved by tuning of a single control parameter and introduction

of a control vector. The controller is also made chattering-free by

producing a continuous analogue of the discontinuous control input.

The effectiveness of the method is established by implementing it to

antisynchronize chaotic Sprott system and Rössler system.

Chapter 7, is concerned with linear generalized synchronization

through unidirectional coupling. In this method only diffusive cou-

pling is required and no external control input is necessary. Trans-

formation matrix in this case of generalized synchronization is deter-

mined by a commutation relation.

In chapter 8, we have used open-plus-closed-loop (OPCL) cou-

pling technique to achieve generalized synchronization between two

non-linear chaotic dynamical systems. For the asymptotic functional

relation between the two systems in generalized synchronization, we

have considered a transformation matrix that can be chosen arbitrar-

ily and five different cases have been taken up.
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In chapter 9, we have studied the stability properties of a time-

delayed non-linear dynamical system. Lag synchronization between

coupled chaotic systems has been discussed. The problem considered

in this chapter is generalized synchronization where the synchronizing

subsystems are asymptotically related by a transformation matrix

whose elements are functions of time. OPCL control technique has

been suitably modified in this context to construct the controller

which serves our purpose. Lag complete and lag anti-synchronization

arises as special cases in our study. Another point of importance in

our study is the use of system state variables in the transformation

matrix.

Chapter 10, addresses the summary of the works and the future

possibility of our work is presented in chapter 11.
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Chapter 2

Stability and Control of Chaotic

Dynamical Systems

2.1 Stabilization and Control of Sprott Model B

2.1.1 Introduction

According to the Poincaré-Bendixson theorem [3], any non-linear dy-

namical system of equations of dimension less than three have no

chaotic solution, but in general, chaotic solution may appear on the

system of equations of dimension three or more. Edward Lorenz [45]

introduced a three-dimensional non-linear dynamical system from a

12-dimensional system of equations which he made for a miniature

atmosphere model. Lorenz’s three-dimensional system of equations

have three parameters.

Here, we consider a three dimensional non-linear chaotic dynami-

cal system with only one parameter, known as Sprott’s model B, one

of nineteen different chaotic models discovered by J C Sprott [79].
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The Sprott’s model B is given by

Ẋ = Y Z

Ẏ = X − Y

Ż = a−XY

 (2.1.1)

where a(> 0) is the parameter.

In case of a = 1, Sprott found that the system (2.1.1) is in chaotic

nature.

2.1.2 Stability Analysis

It is obvious that the system (2.1.1) is dissipative,

since ∂Ẋ
∂X + ∂Ẏ

∂Y + ∂Ż
∂Z = −1 < 0.

For critical points, we have,

Ẋ = 0, Ẏ = 0 and Ż = 0.

Then, Ẏ = 0 gives X = Y.

Ż = 0 gives XY = a which yields X = Y = ±
√
a.

Hence, from Ẋ = 0, we have, Z = 0.

Therefore, the critical points are (±
√
a,±
√
a, 0).

Let us assume that
X = x+

√
a

Y = y +
√
a

Z = z

(2.1.2)

to give a small perturbation on the system (2.1.1) about the critical

point (
√
a,
√
a, 0), where x, y, z are small quantities.
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Then,

ẋ = (y +
√
a)z

= yz +
√
az

=
√
az

(by neglecting second order small quantities)

ẏ = (x+
√
a)− (y +

√
a)

= x− y

ż = a− (x+
√
a)(y +

√
a)

= a− xy −
√
ax−

√
ay − a

= −
√
ax−

√
ay

(by neglecting second order small quantities)

and hence the system of equation (2.1.1) becomes

ẋ =
√
az

ẏ = x− y

ż = −
√
ax−

√
ay

(2.1.3)

Let x = Aeµt, y = Beµt and z = Ceµt where A,B,C are all

non-zero constants, be a solution of equations (2.1.3).

Then, we have,

µA =
√
aC

µB = A−B

µC = −
√
aA−

√
aB
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Eliminating A,B,C from above, one can easily find that∣∣∣∣∣∣∣
µ 0 −

√
a

−1 (µ+ 1) 0
√
a

√
a µ

∣∣∣∣∣∣∣ = 0,

which yields

µ3 + µ2 + aµ+ 2a = 0 (2.1.4)

By applying Routh-Hurwitz criteria [19, 59], the dynamical system

(2.1.1) will be stable if

a > 0 and a− 2a > 0

i.e. a > 0 and − a > 0 − but it is a contradiction.

Therefore, the system is not stable about the critical point (
√
a,
√
a, 0).

2.1.3 Control Analysis

Here, we consider a control variable u and the dynamical system

(2.1.1) can be written as

Ẋ = Y Z

Ẏ = X − Y + u

Ż = a−XY

 (2.1.5)

So, in this case, equations (2.1.3) reduce to

ẋ =
√
az

ẏ = x− y + u

ż = −
√
ax−

√
ay

(2.1.6)

where x, y, z are small quantities.

35



The system of equations (2.1.6), in matrix form, is given by

Ẇ = ÁW + B́u,

where

W =

 x

y

z

 ∈ R3, B́ =

 0

1

0

 , u ∈ R,

and Á =

 0 0
√
a

1 −1 0

−
√
a −
√
a 0


Then,

Á2 =

 −a −a 0

−1 1
√
a

−
√
a
√
a −a


Hence, by Balachandran and Dauer[5], we can get a controllable sys-

tem, since Rank(B́, ÁB́, Á2B́) = 3.

Let us take u = −kx , where k is an appropriate gain (Vincent and

Yu [85]).

Then, the system of equations (2.1.6) becomes

ẋ =
√
az

ẏ = (1− k)x− y

ż = −
√
ax−

√
ay

 (2.1.7)

Let x = A1e
αt, y = B1e

αt and z = C1e
αt, where A1, B1 and C1

are non-zero scalars.
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Eliminating A1, B1, C1, we have from (2.1.7)∣∣∣∣∣∣∣
α 0 −

√
a

(k − 1) (α+ 1) 0
√
a

√
a α

∣∣∣∣∣∣∣ = 0,

which gives

α3 + α2 + aα + a(2− k) = 0 (2.1.8)

Now, α will have negative real parts if

1 < k < 2 (2.1.9)

By Routh-Hurwitz criteria, the system (2.1.1) is stable with con-

trol if 1 < k < 2.

2.1.4 Results and Discussions

We have got two critical points (
√
a,
√
a, 0) and (−

√
a,−
√
a, 0) of

the system (2.1.1). For the first point, we have got the stability

condition. In case of the another critical point (−
√
a,−
√
a, 0), in a

similar way, one can easily find that the dynamical system (2.1.1) is

stable if 1 < k < 2.

Hence, we conclude that the system (2.1.1) is stable about its both

of the critical points with same condition (2.1.9).

If the condition (2.1.9) fails, the system is not stable.

We will now give some attention on the figures attached. There

are two types of figures, controlled figures and uncontrolled figures.

Let us take, at t = 0, (x(0), y(0), z(0)) = (1.05, 1.05, 0).

The components of x, y and z depending on time of the uncon-

trolled system are shown, respectively in figure (2.1), figure (2.3) and

figure (2.5).
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Figure 2.1: Evolution of x in time (without control)
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Figure 2.2: Evolution of x in time (with control)
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Figure 2.3: Evolution of y in time (without control)
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Figure 2.4: Evolution of y in time (with control)
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Figure 2.5: Evolution of z in time (without control)
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Figure 2.6: Evolution of z in time (with control)
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For the controlled system by taking k = 1.5, time depending com-

ponents of x, y and z are shown in figure (2.2), figure (2.4) and figure

(2.6) respectively.

In figure (2.7), figure (2.9) and figure (2.11), we represent the

phase portrait in the (x,y), (y,z) and (x,z) planes respectively with

uncontrolled version.

The controlled figures of the phase portrait in the (x,y), (y,z) and

(x,z) planes represented by figure (2.8), figure (2.10) and figure (2.12)

respectively.
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Figure 2.7: Phase portrait in the (x,y) plane (without control)
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Figure 2.8: Phase portrait in the (x,y) plane (with control)
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Figure 2.9: Phase portrait in the (y,z) plane (without control)
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Figure 2.10: Phase portrait in the (y,z) plane (with control)
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Figure 2.11: Phase portrait in the (x,z) plane (without control)
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Figure 2.12: Phase portrait in the (x,z) plane (with control)

44



2.2 Stability and Control Analysis of the Sprott’s

Model L

2.2.1 Introduction

In 1963, Lorenz [45] was involved with the model of convection rolls

in the atmosphere. From this model, he derived a ordinary non-

linear three dimensional dynamical system. This system is bounded

with chaotic nature. He also introduced a term fractal. It is a frac-

tional dimension between 2 and 3, also known as strange attractor.

Rössler(1976) [80] found the simplest possible strange attractor and

derived a three dimensional non-linear dynamical system of equa-

tion. It also has a chaotic nature. In 1994, Sprott [79] discovered

some more simple chaotic non-linear three dimensional dynamical

systems, known as Sprott’s model A to S.

In this communication, we are taking the Sprott’s model L which

has six terms with one non-linearity, as given below ,

Ẋ = Y + αZ

Ẏ = βX2 − Y

Ż = γ −X

 (2.2.10)

where α, β, γ are all positive parameters.

Sprott found that the above system is chaotic when α = 3.9,

β = 0.9, γ = 1.

Since ∂Ẋ
∂X + ∂Ẏ

∂Y + ∂Ż
∂Z = −1 < 0,

therefore, the dynamical system (2.2.10) is dissipative.
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2.2.2 Stability Analysis

One can easily find that the critical point of the dynamical system

(2.2.10) is given by (γ, βγ2,−βγ2

α ).

We now give some small perturbations on the non-linear dynamical

system (2.2.10) about the critical point as :

X = γ + x; Y = βγ2 + y; Z = −βγ
2

α
+ z (2.2.11)

where x, y, z are small quantities.

Then,

ẋ = βγ2 + y + α(−βγ
2

α
+ z)

= y + αz

ẏ = β(γ + x)2 − (βγ2 + y)

= β(γ2 + 2γx+ x2)− βγ2 − y

= 2βγx− y

(neglecting second degree term as x, y, z are

very small quantities)

ż = γ − (γ + x)

= −x

Hence, the dynamical system (2.2.10) reduces to

ẋ = y + αz

ẏ = 2βγx− y

ż = −x

 (2.2.12)

Let

x = Aeλt, y = Beλt and z = Ceλt (2.2.13)
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where A.B.C ̸= 0, be a solution of (2.2.12).

From (2.2.12) and (2.2.13), we have after eliminating A, B and C,∣∣∣∣∣∣∣
λ −1 −α
−2βγ λ+ 1 0

1 0 λ

∣∣∣∣∣∣∣ = 0

or, λ2(λ+ 1)− 2βγλ+α(λ+ 1) = 0

or, λ3 + λ2 + (α− 2βγ)λ+ α = 0 (2.2.14)

According to Lyapunov’s stability theory, the system of equation

(2.2.10) will be stable if the values of λ have negative real parts.

Now, by Routh-Hurwitz criteria, the necessary and sufficient con-

ditions that the system of equations (2.2.10) will be stable at the

critical point (γ, βγ2,−βγ2

α ) if

α− 2βγ > 0, α > 0 and − 2βγ > 0

which yields α > 0, α > 2βγ, βγ < 0 (2.2.15)

Last inequality contradicts the fact that α > 0, β > 0, γ > 0.

So, the critical point is not stable.

2.2.3 Control on the Sprott’s model L

In this case, we introduce a control term u to the right side of the

2nd equation of (2.2.10) and the system of equations become

Ẋ = Y + αZ

Ẏ = βX2 − Y + u

Ż = γ −X

 (2.2.16)
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In terms of perturbation variables given in (2.2.11), system (2.2.16)

takes the form
ẋ = y + αz

ẏ = 2βγx− y + u

ż = −x

 (2.2.17)

The system of equations (2.2.17) is of the form

Ẇ = ÁW + B́u,

where

W =

 x

y

z

 ∈ R3, B́ =

 0

1

0

 ∈ R3

and Á =

 0 1 α

2βγ −1 0

−1 0 0

 , u ∈ R

Then,

Á2 =

 2βγ − α −1 0

−2βγ 2βγ + 1 2αβγ

0 −1 −α


One can easily obtain that Rank(B́, ÁB́, Á2B́) = 3.

Therefore, the system is controllable (Balachandran and Dauer[5]).

Let u = −kx (Vincent and Yu [85]), where k is an appropriate gain.

Then, the system of equations (2.2.17) becomes

ẋ = y + αz

ẏ = (2βγ − k)x− y

ż = −x

 (2.2.18)
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Let us consider

x = A1e
µt, y = B1e

µt and z = C1e
µt (2.2.19)

where A1.B1.C1 ̸= 0. Eliminating A1, B1, C1, we have from (2.2.18)∣∣∣∣∣∣∣
µ −1 −α

−(2βγ − k) µ+ 1 0

1 0 µ

∣∣∣∣∣∣∣ = 0

or, µ2(µ+ 1)− (2βγ − k)µ+ α(1 + µ) = 0

or, µ3 + µ2 + (α + k − 2βγ)µ+ α = 0 (2.2.20)

By Routh-Hurwitz criteria, equations (2.2.20) will have all roots with

negative real parts if

k > 2βγ − α, α > 0 and k > 2βγ > 0

It yields

k > 2βγ > α (2.2.21)

Therefore, if the condition (2.2.21) is satisfied,

then the system (2.2.10) is stable.

2.2.4 Results and Discussions

Sprott found that system (2.2.10) is of chaotic nature when

α = 3.9, β = 0.9, γ = 1.

Let us choose, (x(0), y(0), z(0)) = (1.8, 1.3, 0.1692). Now, if we

take k = 0 in (2.2.18), we get the uncontrol version of the system

(2.2.10).

The phase portrait in the (x,y), (y,z) and (x,z) planes are shown

respectively in figure (2.13), figure (2.15) and figure (2.17).
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The time developments of the x, y and z components of the uncon-

trolled system are shown, respectively in figure (2.19), figure (2.21)

and figure (2.23). The last three figures represent the oscillatory

nature of the transients in the x, y and z components.

If we take the value of k in such way that the condition (2.2.21)

is satisfied, then the unstable critical point of the system (2.2.10)

becomes stable.

Let us take α = 0.9, β = 0.9 and γ = 1 with k = 2 satisfying

the condition(2.2.21) and have got the stable system with control. In

this case, phase portrait in the (x,y), (y,z) and (x,z) planes are shown

respectively in figure (2.14), figure (2.16) and figure (2.18). The time

developments of the x, y and z components of the controlled system

are shown, respectively in figure (2.20), figure (2.22) and figure (2.24).

When the system was unstable, we have already noted that the

figures [figure (2.19), figure (2.21) and figure (2.23)] represent the

oscillatory nature of the transients in the x, y and z components.

But in figure (2.20), figure (2.22) and figure (2.24), we have shown

that smoothening of the major portion of the transients occur in all

three components x, y and z as the system is now stable with the

condition (2.2.21).
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Figure 2.13: Phase portrait in the (x,y) plane (without control)
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Figure 2.14: Phase portrait in the (x,y) plane (with control)
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Figure 2.15: Phase portrait in the (y,z) plane (without control)
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Figure 2.16: Phase portrait in the (y,z) plane (with control)
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Figure 2.17: Phase portrait in the (x,z) plane (without control)
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Figure 2.18: Phase portrait in the (x,z) plane (with control)
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Figure 2.19: Evolution of x in time (without control)
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Figure 2.20: Evolution of x in time (with control)
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Figure 2.21: Evolution of y in time (without control)
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Figure 2.22: Evolution of y in time (with control)
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Figure 2.23: Evolution of z in time (without control)
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Figure 2.24: Evolution of z in time (with control)
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Chapter 3

Control of Chaos using State

Space Exact Linearization Control

Method

3.1 Introduction

In 1998, the state space exact linearization (SSEL) method for non-

linear control system [27] is introduced by Liqun and Yanzhu [44].

They considered the very famous Lorenz dynamical system [45, 77]

and applied their method. Here we consider Sprott’s chaotic non-

linear dynamical system B. This system has two non-linear terms

with one non-zero parameter. To control the chaotic Sprott system

B, we are applying the previously mentioned SSEL method via lie

algebra, which transformed the non-linear dynamical system into a

linear controllable system.
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3.2 The Exact Linearization Method

Let us consider two smooth functions f : Rn → Rn and g : Rn → Rn

which are also smooth vector fields on Rn.

Let x ∈ Rn and u ∈ R1 be the state variable and control parameter

respectively. Then, any single-input non-linear system can be taken

as

ẋ = f(x) + ug(x) (3.2.1)

Let [X,Y] be the Lie bracket of vector fields X and Y. Let us denote

adifg(x) = [f, adi−1f g](x), i ≥ 1 (3.2.2)

with ad0fg(x) = g(x).

If f = [f1, f2, f3, ..., fn]
T and g = [g1, g2, g3, ..., gn]

T ,

using Lie-algebra, we may consider

adifg = [(adifg)1, (ad
i
fg)2, (ad

i
fg)3, ..., (ad

i
fg)n]

T , (3.2.3)

where

(adifg)j =
n∑

k=1

{
fk
∂(adi−1f g)j

∂xk
− (adi−1f g)k

∂fj
∂xk

}
, (3.2.4)

j = 1, 2, 3, ..., n and i ≥ 1.

Let LXλ denote the Lie derivative of the real-valued function λ(x)

with respect to the vector field X.

Then, in a neighbourhood N(x0) of x0, one can easily obtain the

relations

Lgλ(x) = Lad1fg
λ(x) = ... = Ladn−2

f gλ(x) = 0
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and

Ladn−1
f gλ(x0) ̸= 0, x ∈ N(x0) (3.2.5)

if the following two conditions are satisfied :

(1) Rank of ∆ = n,

where ∆ = [g(x0), ad
1
fg(x0), ..., ad

n−1
f g(x0)] and

(2) Γ is involutive ,

where Γ = span{g, ad1fg, ad2fg, ..., adn−2f g}, near x0.

Moreover, in the neighbourhood N(x0) of x0, there exists the trans-

formation

z = [z1, z2, z3, ..., zn]
T

= Ψ(x)

= [Ψ1(x),Ψ2(x),Ψ3(x), ...,Ψn(x)]
T

= [λ(x), Lfλ(x), L
2
fλ(x), ..., L

n−1
f λ(x)]T

(3.2.6)

and

w = b(x) + ua(x) (3.2.7)

where a(x) = LgL
n−1
f λ(x) and b(x) = Ln

fλ(x).

Hence, we get the linear controllable system [82] from the non-

linear system (3.2.1) by the SSEL method as given below :

ż1 = z2, ż2 = z3, ż3 = z4, ..., ˙zn−1 = zn, żn = w.
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3.3 Control of the Sprott Model B

The Sprott’s non-linear chaotical dynamical system [79] is given by

ẋ1 = x2x3

ẋ2 = x1 − x2
ẋ3 = γ − x1x2

 (3.3.8)

where γ(̸= 0) is a parameter.

This system can be written as

ẋ = f(x) + ug(x)

where

f(x1, x2, x3) =

 x2x3

x1 − x2
γ − x1x2


and

g(x1, x2, x3) =

 0

x1

0

 , u = u(x1, x2, x3), x ∈ R3

To make the linear controllable system using state space exact lin-

earization method, we have to verify the two conditions as discussed

earlier :

(1) Rank of ∆ = 3, where ∆ = [g, ad1fg, ad2fg] and

(2) Γ is involutive , where Γ = span{g, ad1fg}
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Now, using (3.2.2), (3.2.3) and (3.2.4),

(ad1fg)1 = f1
∂g1
∂x1
− g1

∂f1
∂x1

+ f2
∂g1
∂x2
− g2

∂f1
∂x2

+ f3
∂g1
∂x3
− g3

∂f1
∂x3

= −x1x3

(ad1fg)2 = f1
∂g2
∂x1
− g1

∂f2
∂x1

+ f2
∂g2
∂x2
− g2

∂f2
∂x2

+ f3
∂g2
∂x3
− g3

∂f2
∂x3

= x2x3 + x1

(ad1fg)3 = f1
∂g3
∂x1
− g1

∂f3
∂x1

+ f2
∂g3
∂x2
− g2

∂f3
∂x2

+ f3
∂g3
∂x3
− g3

∂f3
∂x3

= x21

which yields,

[f, g] = ad1fg =

 (ad1fg)1

(ad1fg)2

(ad1fg)3



or, [f, g] =

 −x1x3
x2x3 + x1

x21


Again, by similar process, we have,

(ad2fg)1 = f1
∂(ad1fg)1

∂x1
− (ad1fg)1

∂f1
∂x1

+ f2
∂(ad1fg)1

∂x2

− (ad1fg)2
∂f1
∂x2

+ f3
∂(ad1fg)1

∂x3
− (ad1fg)3

∂f1
∂x3

= x2x3(−x3)− (x2x3 + x1)x3 + (γ − x1x2)(−x1)− x21x2
= −2x2x23 − x1x3 − γx1
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(ad2fg)2 = f1
∂(ad1fg)2

∂x1
− (ad1fg)1

∂f2
∂x1

+ f2
∂(ad1fg)2

∂x2

− (ad1fg)2
∂f2
∂x2

+ f3
∂(ad1fg)2

∂x3
− (ad1fg)3

∂f2
∂x3

= x2x3.1− (−x1x3).1 + (x1 − x2)x3 − (x2x3 + x1)(−1)

+ (γ − x1x2)x2
= x2x3 + 2x1x3 + x1 + γx2 − x1x22

(ad2fg)3 = f1
∂(ad1fg)3

∂x1
− (ad1fg)1

∂f3
∂x1

+ f2
∂(ad1fg)3

∂x2

− (ad1fg)2
∂f3
∂x2

+ f3
∂(ad1fg)3

∂x3
− (ad1fg)3

∂f3
∂x3

= x2x3.2x1 − (−x1x3)(−x2)− (x2x3 + x1)(−x1)

= 2x1x2x3 + x21

which yields,

[f, ad1fg] = ad2fg =

 −2x2x23 − x1x3 − γx1
x2x3 + 2x1x3 + x1 + γx2 − x1x22

2x1x2x3 + x21


So, if x1 ̸= 0,

|∆| =

∣∣∣∣∣∣∣
0 −x1x3 −2x2x23 − x1x3 − γx1
x1 x2x3 + x1 x2x3 + 2x1x3 + x1 + γx2 − x1x22
0 x21 2x1x2x3 + x21

∣∣∣∣∣∣∣
= −x1[−x1x3(2x1x2x3 + x21)− x21(−2x2x23 − x1x3 − γx1)]

= −γx41 ̸= 0

Therefore, we can say, Rank of ∆ = 3.
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Now,

(g, ad1fg)1 = g1
∂(ad1fg)1

∂x1
− (ad1fg)1

∂g1
∂x1

+ g2
∂(ad1fg)1

∂x2

− (ad1fg)2
∂g1
∂x2

+ g3
∂(ad1fg)1

∂x3
− (ad1fg)3

∂g1
∂x3

= 0

(g, ad1fg)2 = g1
∂(ad1fg)2

∂x1
− (ad1fg)1

∂g2
∂x1

+ g2
∂(ad1fg)2

∂x2

− (ad1fg)2
∂g2
∂x2

+ g3
∂(ad1fg)2

∂x3
− (ad1fg)3

∂g2
∂x3

= −(−x1x3).1 + x1x3

= 2x1x3

(g, ad1fg)3 = g1
∂(ad1fg)3

∂x1
− (ad1fg)1

∂g3
∂x1

+ g2
∂(ad1fg)3

∂x2

− (ad1fg)2
∂g3
∂x2

+ g3
∂(ad1fg)3

∂x3
− (ad1fg)3

∂g3
∂x3

= 0

which yields,

[g, ad1fg] =

 (g, ad1fg)1

(g, ad1fg)2

(g, ad1fg)3

 =

 0

2x1x3

0


Therefore, it is similar like g as [g, ad1fg] is along the y-axis.

Thus, Γ = span{g, ad1fg} which is involutive, where xi ∈ R, i =

1, 2, 3.

Hence, the required two conditions for the relation (3.2.5) have

been satisfied for n = 3.

Now, Lgλ(x) = 0 gives x1
∂λ
∂x2

= 0.
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This implies that

∂λ

∂x2
= 0 as x1 ̸= 0. (3.3.9)

Lad1fg
λ(x) = 0 gives

−x1x3
∂λ

∂x1
+ x21

∂λ

∂x3
= 0.

or, x3
∂λ

∂x1
− x1

∂λ

∂x3
= 0 as x1 ̸= 0 (3.3.10)

Then, solution of the equation (3.3.10) is given by,

λ = x21 + x23 + σ (3.3.11)

where σ is a numerical constant chosen in such way that the goal of

the control can be attained.

Since ∂λ
∂x2

= 0, using (3.3.10), we can write Lad2fg
λ(x) as

Lad2fg
λ(x) = (ad2fg)1

∂λ

∂x1
+ (ad2fg)3

∂λ

∂x3

= (−2x2x23 − x1x3 − γx1)
∂λ

∂x1
+ (2x1x2x3 + x21)

∂λ

∂x3

= [(−2x2x23 − x1x3 − γx1).
x1
x3

+ (2x1x2x3 + x21)]
∂λ

∂x3

= −γx
2
1

x3

∂λ

∂x3

= −2γx21
̸= 0, since x1 ̸= 0 and γ ̸= 0

(3.3.12)

Using (3.3.11), we have,

Lfλ(x) = x2x3
∂

∂x1
(x21 + x23 + σ) + (γ − x1x2)

∂

∂x3
(x21 + x23 + σ)

= 2γx3
(3.3.13)
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and

L2
fλ(x) = Lf(Lfλ(x))

= x2x3
∂

∂x1
(Lfλ(x)) + (x1 − x2)

∂

∂x2
(Lfλ(x))

+ (γ − x1x2)
∂

∂x3
(Lfλ(x))

= 2γ(γ − x1x2)

(3.3.14)

According to the state space exact linearization method, using (3.2.6)

we can construct the transformation process as given below:

z = [z1, z2, z3]
T

= Ψ(x)

= [Ψ1(x),Ψ2(x),Ψ3(x)]
T

= [λ(x), L1
fλ(x), L

2
fλ(x)]

T

and

w = b(x) + ua(x) (3.3.15)

where

a(x) = LgL
2
fλ(x) and b(x) = L3

fλ(x) (3.3.16)

Hence,  z1

z2

z3

 = z = Ψ(x) =

 x21 + x23 + σ

2γx3

2γ(γ − x1x2)

 (3.3.17)

From (3.3.17), we can construct the inverse transformation as x1

x2

x3

 = x = Ψ−1(z) =


√

4γ2z1−4γ2σ−z22
2γ

2γ2−z3√
4γ2z1−4γ2σ−z22

z2
2γ

 (3.3.18)
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From (3.3.16), we have,

a(x) = LgL
2
fλ(x)

= x1
∂

∂x2
(L2

fλ(x))

= x1
∂

∂x2
[2γ(γ − x1x2)]

= −2γx21

(3.3.19)

and

b(x) = L3
fλ(x)

= Lf(L
2
fλ(x))

= x2x3
∂

∂x1
(L2

fλ(x)) + (x1 − x2)
∂

∂x2
(L2

fλ(x))

+ (γ − x1x2)
∂

∂x3
(L2

fλ(x))

= x2x3(−2γx2) + (x1 − x2)(−2γx1)

= −2γx22x3 − 2γx21 + 2γx1x2

(3.3.20)

Therefore, from (3.3.15), u can be obtained as

u =
w

a(x)
− b(x)

a(x)

or, u = − w

2γx21
− x22x3 + x21 − x1x2

x21
(3.3.21)

Using (3.3.15) and [(3.3.17) - (3.3.20)], we have got the linear con-

trollable system from the system of equation (3.3.8) as given below:

ż1 = z2, ż2 = z3 and ż3 = w, (3.3.22)

where w can be taken as

w = c1z1 + c2z2 + c3z3 (3.3.23)
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in such way that by changing the value of σ, we can control the

variable x1 to the goal xg.

Let us consider,

z1 = P1e
µt, z2 = Q1e

µt and z3 = R1e
µt,

where P1.Q1.R1 ̸= 0.

Now, eliminating P1, Q1 and R1, one may easily obtain,∣∣∣∣∣∣∣
µ −1 0

0 µ −1
−c1 −c2 (µ− c3)

∣∣∣∣∣∣∣ = 0

After simplifying, one gets,

µ3 + (−c3)µ2 + (−c2)µ+ (−c1) = 0

Hence, for the controlled system (3.3.22), by Routh-Hurwitz criteria,

the values of the parameters c1, c2, c3 are chosen[50] in such way that

c1 + c2c3 > 0 with c1 < 0, c2 < 0 & c3 < 0 are satisfied.

Using (3.3.17) and (3.3.23) in (3.3.21), one gets,

u = −c1(x
2
1 + x23 + σ) + 2c2γx3 + 2c3γ(γ − x1x2)

2γx21

− x22x3 + x21 − x1x2
x21

(3.3.24)

which gives the linear feedback control parameter u.

With the help of (3.3.18), we may consider the term σ as given

below :

σ = −x2g (3.3.25)

where xg is the control goal.
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3.4 Results and Discussions

For γ = 1, Sprott found that the system (3.3.8) is chaotic.

Numerical simulation is done with the initial values of the state vari-

ables x1(0) = 1, x2(0) = 1 & x3(0) = 1.

Here, we have taken, c1 = −0.5, c2 = −2.5 & c3 = −0.75 and

the control is started at t = 200 with xg = 1.25. At time t = 500, the

control goal is changed from xg = 1.25 to xg = 1.75.

Using Runge-Kutta method, time evolution of x1, x2, x3 are shown

in the figure (3.1), figure (3.3) and figure (3.5) respectively with u = 0

whereas figure (3.2), figure (3.4) and figure (3.6) depict the time evo-

lution of x1, x2, x3 respectively in presence of control u.

Finally, we conclude that the SSEL method has been applied suc-

cessfully to control the Sprott system B.
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Figure 3.1: The time evolution of x1 in uncontrolled system
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Figure 3.2: The time evolution of x1 in controlled system
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Figure 3.3: The time evolution of x2 in uncontrolled system
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Figure 3.4: The time evolution of x2 in controlled system
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Figure 3.5: The time evolution of x3 in uncontrolled system
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Figure 3.6: The time evolution of x3 in controlled system
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Chapter 4

Linear feedback based control of

blood glucose in a modified model

for glucose insulin kinetics : A

theoretical study

4.1 Introduction

One of the most serious diseases that the world faces today is dia-

betes. Diabetes results from malfunctions in the blood glucose-insulin

kinetics in the human body. Hence, a thorough understanding of the

physiological process that controls the glucose insulin kinetics is nec-

essary to devise a treatment for diabetes. It is this motivation that

led to investigation of mathematical models guiding this physiological

process. Thus, theoretical investigation of such mathematical models

is of both theoretical and practical importance. The insight gained

through theoretical investigation or numerical computation on such

models might prove to be enlightening for the medical researchers

working in the same field.
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This field of vigorous interdisciplinary research came into being

with the pioneering works of Dr. R. N.Bergman and his colleagues[11].

In biological science, frequently-sampled intravenous glucose toler-

ance (FSIGT) tests [35] are very popular. The test is done by in-

jecting a single intravenous injection of glucose into a fasting human

body or dog. Following this, the blood sample containing plasma

glucose and plasma insulin is collected. This FSIGT test studies the

behaviour of the glucose level against the insulin level in plasma.

These tests were introduced by Dr. Bergman and his team in early

eighties. Evaluation of the the FSIGT test data guided them to pro-

duce a mathematical model for glucose and insulin kinetics, which

later came to be known as Bergman’s minimal model. A version of

this model is given by,

Ẋ = −p2X + p3(I − Ib)

Ġ = −XG+ p1(Gb −G)

İ =

−n0I + g(G− h), if G ≥ h

−n0I, otherwise

(4.1.1)

subject to the initial conditions X(0) = 0, G(0) = G0(> 0), I(0) =

I0(> 0).

The variables involved have the following physical interpretation :

X is the interstitial insulin activity at time t,

G is the plasma glucose concentration at time t,

I is the plasma insulin concentration at time t,

Gb is the basal plasma glucose concentration ,

Ib is the basal plasma insulin concentration,
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h is approximately the basal glucose plasma level,

n0 is the insulin clearance fraction, p1, p2, p3 and G0 are param-

eters.

Recently, much complicated models incorporating a large num-

ber of variables and factoring in many more parameters have been

produced and investigated. But due to their complexity, a proper

theoretical study is either rendered impossible or not too enlighten-

ing. Though these models are much more accurate, they are mainly

useful in the domain of computational studies. Minimal models, on

the other hand, try to capture much of the major features of the dy-

namics within a very simple framework. Thus, minimal models are

best suited for theoretical studies. According to Bergman[11] him-

self, this is probably the reason why so many years after their genesis,

the minimal models are still being studied thoroughly.

4.2 The Modified Model for Glucose Insulin Ki-

netics

The model in (4.1.1) is a non-smooth dynamical system, owing to

the discontinuity in the evolution equation of plasma insulin. One

possible approach to study such a system is to resort to the the-

ory of non-smooth dynamical systems. In this chapter, however, we

adopt a different approach. We generate a smooth approximation of

the corresponding non-smooth system by replacing the non-smooth

functions with suitable smooth functions. The dynamics of I can be
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written as

İ = −n0I + f(G)

where

f(G) = g (G− h)sgn(G− h)

and sgn is the signum function defined by

sgn(x) = 1, x ≥ 0

= 0, x < 0

We contend that the functional response that is widely accepted

in ecological studies is an acceptable smooth approximation of the

non-smooth function f(G). Let us consider the function

fs(G) = p
Gα

hα +Gα
,

where 0 < α < 1, p is a constant. The subscript ‘s’ in fs stands for

smooth. f(G) has a discontinuous switching behaviour at h. fs(G)

also displays a switching behaviour at a value h∗ that is determined

by α. The value of α is restricted to the open unit interval to ensure a

very sharp, but smooth nonetheless, switching. f(G) is 0 when G < h

and in keeping with this behaviour, fs(G) maintains a very negligible

value when G < h∗. The only important modification introduced is

that the function fs(G) saturates at high values of G and approaches

1 as G → ∞. But the behaviour of G is linear when G > h. We

introduce this modification with the realisation that glucose level G

cannot become extremely high in a real world glucose-kinetics system.

If we assume that this maximum allowable level is GM , then we will

choose

p = sup
0≤G≤GM

f(G).
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Figure 4.1: Here, α = 0.15, p = 1.5, Ib = 11, Gb =
92, h = 89.5, n0 = 0.3, g = 0.003349, p1 = 0.03082, p2 =
0.02093, p3 = 0.00001062, X = 0, G = Y = 287, I = Z =
403.4

Along with these observations, we also present the figure (4.1) to

establish that the modification of the model is justified. From the

figure (4.1), we can see that the behaviour of the original dynami-

cal system (4.1.1) is almost same as the modified dynamical system

(4.2.2).

Replacing G by Y and I by Z, the modified smooth dynamical
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system (4.1.1) is given by

Ẋ = −p2X + p3(Z − Ib)

Ẏ = −XY + p1(Gb − Y )

Ż = −n0Z + p
Y α

hα + Y α

 (4.2.2)

where 0 < α < 1, subject to the initial conditions X(0) = 0, Y (0) =

Y0(> 0), Z(0) = Z0(> 0).

To make dimensionless system, following transformations are ap-

plied:

x =
X

X0
, y =

Y

Y0
, z =

Z

pT0
, t =

T

T0
,

b = p2T0, a = p1T0, c =
pp3T

2
0

X0
, d =

Ib
pT0

,

µ = X0T0, m =
Gb

Y0
, n = n0T0, H =

h

Y0

(4.2.3)

and system (4.2.2) takes the final form as

ẋ = −bx+ c(z − d)

ẏ = −µxy + a(m− y)

ż = −nz + yα

Hα + yα

 (4.2.4)

where 0 < α < 1

4.3 Dynamical Analysis of the Modified Model

4.3.1 Dissipativity

To study the stability of the system (4.2.4), we will first check the

dissipativeness of the system (4.2.4).
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Figure 4.2: β = a+ b+ n+ µx, p = 6.7, Ib = 11, Gb = 92,

h = 89.5, n0 = 0.3, g = 0.003349, α = 0.05, p1 = 0.03082,
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If we set (a + b + n + µx) > 0, then system (4.2.4) is dissipative

since ∂ẋ
∂x +

∂ẏ
∂y +

∂ż
∂z < 0.

From the figure (4.2), one may claim that β > 0 as the time t in-

creases where β = a + b + n + µx. Hence, it shows the existence of

dissipativeness.

4.3.2 Equilibrium Points

Let the critical point be E(x∗, y∗, z∗).

Then, ẋ = 0 gives

−bx∗ + c(z∗ − d) = 0

x∗ =
c(z∗ − d)

b
(4.3.5)

Now, ẏ = 0 gives

−µx∗y∗ + a(m− y∗) = 0

y∗(µx∗ + a) = am

y∗ =
am

µx∗ + a
(4.3.6)

From ż = 0, we have,

−nz∗ +
yα∗

Hα + yα∗
= 0

z∗ =
1

n
.

yα∗
Hα + yα∗

(4.3.7)

Since x∗ > 0, one gets from (4.3.5), z∗ > d.

Also, from (4.3.7), it is easy to note that z∗ <
1
n .

Thus,

d < z∗ <
1

n
(4.3.8)
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and hence

nd < 1. (4.3.9)

The equation (4.3.7) also gives

1

n
.

yα∗
Hα + yα∗

> d

which implies,

yα∗ >
ndHα

1− nd
(4.3.10)

Again, (4.3.5) and (4.3.6) yield

y∗ =
am

µx∗ + a

=
am

µ.c(z∗−d)b + a

Hence,

y∗ =
abm

µcz∗ + ab− µcd (4.3.11)

and (4.3.6) gives

x∗ =
a(m− y∗)

µy∗

Substituting this value of x∗ in (4.3.5), one may obtain,

z∗ = d+
bx∗
c

or, z∗ = d+
b

c
.
a(m− y∗)

µy∗

or,
1

n
.

yα∗
Hα + yα∗

=
(cdµ− ab)y∗ + abm

cµy∗

or, cµyα+1
∗ = (Hα + yα∗ ){(cdµ− ab)y∗ + abm}n (4.3.12)

From the equation (4.3.12), we can find out the value of y∗ and hence

x∗ and z∗.
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4.3.3 Analysis of Stability of the Equilibrium Point

In order to investigate stability of the system at E(x∗, y∗, z∗), small

perturbations are introduced to the system (4.2.4) by the substitu-

tion,

x = x′ + x∗, y = y′ + y∗, z = z′ + z∗

where x′, y′, z′ are very small.

Then, the system of equation(4.2.4) reduces to

ẋ′ = −b(x′ + x∗) + c{(z′ + z∗)− d}

= −bx′ + cz′ + [−bx∗ + cz∗ − cd]

= −bx′ + cz′ +

[
−b.c(z∗ − d)

b
+ cz∗ − cd

]
= −bx′ + cz′

ẏ′ = −µ(x′ + x∗)(y
′ + y∗) + a{m− (y′ + y∗)}

= −µy∗x′ − µx∗y′ − ay′ + [−µx∗y∗ + am− ay∗]

(neglecting higher degree terms as

x′, y′, z′ are very small quantities)

= −µy∗x′ − (µx∗ + a)y′, using (4.3.6)
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ż′ = −n(z′ + z∗) +
(y′ + y∗)

α

Hα + (y′ + y∗)α

= −nz′ − nz∗ +
1

1 +Hα(y′ + y∗)−α

= −nz′ − nz∗ +
1

1 + y−α∗ Hα
(
1 + y′

y∗

)−α
= −nz′ − nz∗ +

1

1 + y−α∗ Hα
(
1− α y′

y∗

) , where

∣∣∣∣ y′y∗
∣∣∣∣ < 1

and neglecting higher order terms

= −nz′ − nz∗ +
1

(1 + y−α∗ Hα)− αHαy
−(α+1)
∗ y′

= −nz′ − nz∗ +
1

1 + y−α∗ Hα

1− y′

1+y−α
∗ Hα

αHαy
−(α+1)
∗

−1

= −nz′ − nz∗ +
1

1 + y−α∗ Hα

1 + y′

1+y−α
∗ Hα

αHαy
−(α+1)
∗

 ,
where

∣∣∣∣∣αHαy
−(α+1)
∗ y′

1 + y−α∗ Hα

∣∣∣∣∣ < 1

and neglecting higher order terms

= −nz′ − nz∗ +
1

(1 + y−α∗ Hα)2

[
(1 + y−α∗ Hα) + αHαy−(α+1)

∗ y′
]

= −nz′ + αHαy
−(α+1)
∗ y′

(1 + y−α∗ Hα)2
+

[
−nz∗ +

1

1 + y−α∗ Hα

]
=

αHαy
−(α+1)
∗

(1 + y−α∗ Hα)2
y′ − nz′, using(4.3.7)
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Hence, the system of equation (4.2.4) becomes

ẋ′ = −bx′ + cz′

ẏ′ = −µy∗x′ − (µx∗ + a)y′

ż′ =
αHαy−α−1∗

(1 + y−α∗ Hα)2
y′ − nz′

 (4.3.13)

where α ∈ (0, 1)

Let

x′ = A1e
λt, y′ = B1e

λt and z′ = C1e
λt (4.3.14)

where A1.B1.C1 ̸= 0, be a solution of (4.3.13). Substituting (4.3.14),

in equation (4.3.13) and eliminating A1, B1 and C1, we obtain,∣∣∣∣∣∣∣∣
(λ+ b) 0 −c
µy∗ (λ+ a+ µx∗) 0

0 − αHαy−α−1
∗

(1+y−α
∗ Hα)2

(λ+ n)

∣∣∣∣∣∣∣∣ = 0

or,

λ3 + (µx∗ + a+ b+ n)λ2 + [(µx∗ + a)(b+ n) + bn]λ

+

[
bn(µx∗ + a) + cµy∗

αHαy−α−1∗
(1 + y−α∗ Hα)2

]
= 0

(4.3.15)

According to Lyapunov’s fundamental theory [70, 80], the system

of equations (4.2.4) will be stable if the values of λ have negative

real parts. This condition on eigen values of (4.3.15) leads us to the

following theorem.

Theorem 1. The equilibrium point E(x∗, y∗, z∗) of system (4.2.4)

will be locally asymptotically stable if and only if

nαHαA{(cdµ− ab)A+ abm}

< m2(Hα +mα)(a+ b)(b+ n)(a+ n),
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where Aα = ndHα

1−nd .

Proof. By Routh-Hurwitz criteria [50], the equilibrium pointE(x∗, y∗, z∗)

of (4.2.4) will be stable if and only if

µx∗ + a+ b+ n > 0,

(µx∗ + a)(b+ n) + bn > 0,

bn(µx∗ + a) + cµy∗
αHαy−α−1∗

(1 + y−α∗ Hα)2
> 0

and

(µx∗+a+ b+ n){(µx∗ + a)(b+ n) + bn}

> bn(µx∗ + a) + cµy∗
αHαy−α−1∗

(1 + y−α∗ Hα)2

(4.3.16)

The first three conditions are obviously satisfied. It is the fourth

condition that determines the stability criterion.

From (4.3.6),

µx∗ + a =
am

y∗
(4.3.17)

Equations (4.3.16) and (4.3.17) together will give(
am

y∗
+ b+ n

){
am

y∗
(b+ n) + bn

}
> bn.

am

y∗
+

αcµHαy−α∗
(1 + y−α∗ Hα)2

Simple mathematical calculation yields

(Hα + yα∗ )[a
2m2(b+ n) + am(b+ n)2y∗ + bn(b+ n)y2∗]

> nαHαy∗{(cdµ− ab)y∗ + abm}
(4.3.18)
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For x∗ > 0, one may write from equation(4.3.5),

z∗ > d

which gives

µcz∗ + ab− µcd > ab (4.3.19)

Then, (4.3.11) becomes,

y∗ < m which gives yα∗ < mα

Using (4.3.10), we have,

Aα =
ndHα

1− nd
< yα∗ < mα (4.3.20)

Now, using (4.3.20), the inequality (4.3.18) reduces to

nαHαy∗{(cdµ− ab)y∗ + abm} < (Hα +mα)[a2m2(b+ n)

+am(b+ n)2m+ bn(b+ n)m2]

or,

nαHαA{(cdµ− ab)A+ abm}

< m2(Hα +mα)(b+ n)[a2 + a(b+ n) + bn]

or,

nαHαA{(cdµ− ab)A+ abm}

< m2(Hα +mα)(a+ b)(b+ n)(a+ n)
(4.3.21)

The above inequality (4.3.21) gives the condition for stable situation

of the dynamical system (4.2.4).
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4.4 Control of Blood Glucose : A linear feedback

based approach

The system of equation(4.2.4) becomes unstable when

nαHαA{(cdµ− ab)A+ abm}

≥ m2(Hα +mα)(a+ b)(b+ n)(a+ n)
(4.4.22)

Introducing the control term ‘u’ on the right hand side of second

equation of the system (4.2.4), one may obtain,

ẋ = −bx+ c(z − d)

ẏ = −µxy + a(m− y) + u

ż = −nz + yα

Hα + yα
, 0 < α < 1

 (4.4.23)

Under small perturbations to the system(4.4.23) at E(x∗, y∗, z∗)

given by the transformation

x = x̃+ x∗, y = ỹ + y∗, z = z̃ + z∗

the equation(4.4.23) reduces to

˙̃x = −bx̃+ cz̃

˙̃y = −µy∗x̃− (µx∗ + a)ỹ + u

˙̃z =
αHαy−α−1∗

(1 + y−α∗ Hα)2
ỹ − nz̃, 0 < α < 1

 (4.4.24)

Lemma 1. The system (4.4.24) is controllable.

Proof. The system(4.4.24) can be represented in the form

Ẇ = ÁW + B́u ,
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where

Á =


−b 0 c

−µy∗ −(a+ µx∗) 0

0 − αHαy−α−1
∗

(1+y−α
∗ Hα)2

−n

 ,

W =

 x̃

ỹ

z̃

 ∈ R3, B́ =

 0

1

0

 , u ∈ R

With this choice of Á and B́, it is easy to check that

Rank (B́, ÁB́, Á2B́) = 3.

Hence, the system (4.4.23) is controllable[5], as it satisfies the Kalman

rank condition.

Since feedback is the most natural and easily implemented control

scheme, we seek a feedback control mechanism [85] to control the

given system. Hence, we choose a linear feedback with x∗ as control

goal, which is mathematically represented by

u = k(x− x∗) = kx̃

where the feedback gain k has to be chosen properly.

Then, the system(4.4.24) becomes

˙̃x = −bx̃+ cz̃

˙̃y = −(µy∗ − k)x̃−
am

y∗
ỹ

˙̃z =
αHαy−α−1∗

(1 + y−α∗ Hα)2
ỹ − nz̃, 0 < α < 1


(4.4.25)
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Theorem 2. The controlled system (4.4.25) is locally asymptotically

stable at the target equilibrium point E(x∗, y∗, z∗) if and only if the

feedback control gain k is chosen such that the inequality

nαHα

(
A− k

µ

)
{(cdµ− ab)A+ abm}

< m2(Hα +mα)(a+ b)(b+ n)(a+ n)

is satisfied.

Moreover, there exists

kc = µ

[
A− m2(Hα +mα)(a+ b)(b+ n)(a+ n)

nαHα{(cdµ− ab)A+ abm}

]
such that for all k > kc, the system is stable at E.

Proof. Let x̃ = A2e
λ1t, ỹ = B2e

λ1t, z̃ = C2e
λ1t.

Eliminating A2, B2, C2 from (4.4.25), one gets,∣∣∣∣∣∣∣∣∣
(λ1 + b) 0 −c
(µy∗ − k)

(
λ1 +

am
y∗

)
0

0 − αHαy−α−1
∗

(1+y−α
∗ Hα)2

(λ1 + n)

∣∣∣∣∣∣∣∣∣ = 0

or,

λ31+

{
am

y∗
+ b+ n

}
λ21 +

{
am

y∗
(b+ n) + bn

}
λ1

+
abmn

y∗
+ c(µy∗ − k)

αHαy−α−1∗
(1 + y−α∗ Hα)2

= 0

(4.4.26)
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Therefore, the system(4.4.23) will be stable at (x∗, y∗, z∗) if

am

y∗
+ b+ n > 0,

am

y∗
(b+ n) + bn > 0,

abmn

y∗
+ c(µy∗ − k)

αHαy−α−1∗
(1 + y−α∗ Hα)2

> 0

and (
am

y∗
+ b+ n

){
am

y∗
(b+ n) + bn

}
>
abmn

y∗
+ c(µy∗ − k)

αHαy−α−1∗
(1 + y−α∗ Hα)2

(4.4.27)

Using (4.3.5), (4.3.10), (4.3.11) and (4.3.12), inequality (4.4.27)

reduces to

nαHα

(
A− k

µ

)
{(cdµ− ab)A+ abm}

< m2(Hα +mα)(a+ b)(b+ n)(a+ n)

or, nαHαΓ < m2Υ

(4.4.28)

where Γ =
(
A− k

µ

)
{(cdµ− ab)A+ abm}

and Υ = (Hα +mα)(a+ b)(b+ n)(a+ n)

The inequility(4.4.28) gives the required condition for stable sit-

uation. The existence of kc follows by an easy manipulation of the

above inequality.

4.5 Numerical Analysis and Discussions

Here, we will make three cases to discuss the stability of the dy-

namical system for the glucose and insulin kinetics. Using matlab
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software, stability analysis of the problem is made by observing the

numerical data for the respective cases.

Initially, we assume that, p = 7.7, Ib = 11, Gb = 92, h = 89.5,

n0 = 0.3, g = 0.003349, X = 0, Y = 287, Z = 403.4,

X0 = 355, Y0 = 0.97, Z0 = 0.17, T0 = 0.13.

Case-I : Let us take, p1 = 0.02032, p2 = 0.01093, p3 = 0.01341.

Then, with the help of (4.2.3), one may find the parameters value of

the system (4.4.23).

From Table-1, one may observe that the dynamical system (4.4.25)

is stable for α ∈ (0, 0.48]. In this interval, the stability of the system

is independent of the control variable u (i.e., k = 0). But if we

take, α ≥ 0.49, the system without control becomes unstable. In this

situation, control is to be activated.

Table-1

k0 α nαHαΓ m2Υ Status

0.000 0.48 1.0528 1.0867 stable

0.000 0.49 1.1523 1.1371 unstable

0.032 0.49 1.1367 1.1371 stable

0.032 0.50 1.2426 1.1899 unstable

0.133 0.50 1.1895 1.1899 stable

0.133 0.51 1.2992 1.2452 unstable

0.229 0.51 1.2447 1.2452 stable

0.229 0.52 1.3585 1.3030 unstable

0.320 0.52 1.3028 1.3030 stable

0.320 0.53 1.4208 1.3635 unstable

0.407 0.53 1.3634 1.3635 stable

0.407 0.54 1.4858 1.4268 unstable

0.491 0.54 1.4262 1.4268 stable

continued on next page
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Table-1 (continued)

k0 α nαHαΓ m2Υ Status

0.491 0.55 1.5532 1.4930 unstable

0.570 0.55 1.4928 1.4930 stable

0.570 0.56 1.6246 1.5624 unstable

0.646 0.56 1.5622 1.5624 stable

0.646 0.57 1.6991 1.6349 unstable

0.719 0.57 1.6346 1.6349 stable

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
2.277 0.97 10.0358 10.0445 stable

2.277 0.98 10.7555 10.5109 unstable

2.298 0.98 10.5040 10.5109 stable

2.298 0.99 11.2549 10.9990 unstable

2.319 0.99 10.9883 10.9990 stable

To set up the dynamical system in a stable form for α = 0.49, we

have to consider k0 = 0.032, where k0 = k×10−3. But when α reaches

the value 0.50, the system becomes unstable with k0 = 0.032. In this

case, the stability of the system is made by choosing k0 = 0.133.

It is interesting to see that the system is unstable again with k0 =

0.133 if we take α = 0.51. In this situation, from Table-1, we can say

that the system is stable if k0 = 0.229.

In case of α = 0.52, we have got the stable system if k0 = 0.32

and so on.

By choosing k0 = 2.319, the system is always stable when 0 < α < 1.

Figure (4.3) and figure (4.4) represent the evolution curve of x and

z with respect to time respectively.
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Figure 4.3: Evolution of x in time
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Figure 4.4: Evolution of z in time
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Figure 4.5: Evolution of y in time

To show the controlled glucose level, we have drawn the figure

(4.5). This figure gives us a brief idea for making a control dynamical

system from an unstable situation. One may set the glucose level by

increasing or decreasing the control parameter k0 as per requirement.

Case-II : We now consider, p1 = 0.02032, p2 = 0.01093, p3 =

0.05405.

Here, the system is stable without control variable when 0 < α ≤
0.28. If we consider α = 0.29, we have to activate the control variable.

But in the previous case, we have considered the control term for

α = 0.49.

In this case, for α = 0.29, the stability of the system can be

attained with k0 = 0.115.
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When α = 0.30, we have to consider k0 = 0.262. In case of k0 ≤
0.261, the stability condition (4.4.28) is not satisfied for α = 0.30.

Table-2 shows that the system is stable always for any values of

α(∈ (0, 1)) if one may assume k0 = 2.970.

Table-2

k0 α nαHαΓ m2Υ Status

0.000 0.28 0.4251 0.4384 stable

0.000 0.29 0.4945 0.4588 unstable

0.115 0.29 0.4585 0.4588 stable

0.115 0.30 0.5315 0.4801 unstable

0.262 0.30 0.4800 0.4801 stable

0.262 0.31 0.5553 0.5024 unstable

0.398 0.31 0.5021 0.5024 stable

0.398 0.32 0.5798 0.5257 unstable

0.523 0.32 0.5255 0.5257 stable

0.523 0.33 0.6057 0.5501 unstable

0.639 0.33 0.5498 0.5501 stable

0.639 0.34 0.6327 0.5756 unstable

0.747 0.34 0.5752 0.5756 stable

0.747 0.35 0.6610 0.6024 unstable

0.847 0.35 0.6022 0.6024 stable

0.847 0.36 0.6910 0.6303 unstable

0.941 0.36 0.6302 0.6303 stable

0.941 0.37 0.7222 0.6596 unstable

1.030 0.37 0.6589 0.6596 stable

1.030 0.38 0.7542 0.6902 unstable

1.113 0.38 0.6895 0.6902 stable

1.113 0.39 0.7883 0.7223 unstable

1.191 0.39 0.7217 0.7223 stable

1.191 0.40 0.8242 0.7558 unstable

1.265 0.40 0.7552 0.7558 stable

1.265 0.41 0.8616 0.7909 unstable

continued on next page
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Table-2 (continued)

k0 α nαHαΓ m2Υ Status

1.335 0.41 0.7903 0.7909 stable

1.335 0.42 0.9008 0.8276 unstable

1.401 0.42 0.8275 0.8276 stable

1.401 0.43 0.9423 0.8660 unstable

1.465 0.43 0.8650 0.8660 stable

1.465 0.44 0.9841 0.9063 unstable

1.525 0.44 0.9054 0.9063 stable

1.525 0.45 1.0292 0.9483 unstable

1.582 0.45 0.9479 0.9483 stable

1.582 0.46 1.0766 0.9924 unstable

1.637 0.46 0.9916 0.9924 stable

1.637 0.47 1.1253 1.0384 unstable

1.689 0.47 1.0382 1.0384 stable

1.689 0.48 1.1773 1.0867 unstable

1.740 0.48 1.0849 1.0867 stable

1.740 0.49 1.2294 1.1371 unstable

1.788 0.49 1.1353 1.1371 stable

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
2.919 0.95 9.1711 9.1729 stable

2.919 0.96 10.1538 9.5989 unstable

2.932 0.96 9.5958 9.5989 stable

2.932 0.97 10.6203 10.0445 unstable

2.945 0.97 10.0286 10.0445 stable

2.945 0.98 11.0961 10.5109 unstable

2.958 0.98 10.4687 10.5109 stable

2.958 0.99 11.5802 10.9990 unstable

2.970 0.99 10.9663 10.9990 stable
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Figure 4.6: Evolution of x in time

We have shown the graph of x and z with respect to time in

figure (4.6) and figure (4.7) respectively. Figure (4.8) represents the

behaviour of glucose level as the time increases.

Here, different values of k0 have been taken to show the necessity

of the control term. It is clear from the figure (4.8) that one may con-

trol the behaviour of glucose level by adjusting the control parameter.

Case-III : Let us take, p1 = 0.02032, p2 = 0.01093, p3 = 0.7967.

In the earlier two cases, we have observed that the system be-

comes stable for any value of α(∈ (0, 1)) if k0 = 2.319 and k0 = 2.97

respectively.

At the present case, by choosing k0 = 2.970, the system becomes

unstable if α ≥ 0.82.
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Figure 4.7: Evolution of z in time
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Figure 4.8: Evolution of y in time
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To obtain the stable dynamical system again, one may have to

satisfy the stability condition (4.4.28) for α = 0.82 by taking k0 =

2.98. If we assume k0 = 3.17, the dynamical system remains stable

for 0 < α < 1 which have shown in Table-3.

Table-3

k0 α nαHαΓ m2Υ Status

0.000 0.14 0.2129 0.2322 stable

0.000 0.15 0.3139 0.2430 unstable

0.142 0.15 0.2427 0.2430 stable

0.142 0.16 0.3556 0.2543 unstable

0.303 0.16 0.2540 0.2543 stable

0.303 0.17 0.3752 0.2661 unstable

0.443 0.17 0.2660 0.2661 stable

0.443 0.18 0.3971 0.2785 unstable

0.568 0.18 0.2784 0.2785 stable

0.568 0.19 0.4206 0.2914 unstable

0.682 0.19 0.2906 0.2914 stable

0.682 0.20 0.4451 0.3049 unstable

0.786 0.20 0.3041 0.3049 stable

0.786 0.21 0.4720 0.3191 unstable

0.882 0.21 0.3190 0.3191 stable

0.882 0.22 0.5014 0.3339 unstable

0.973 0.22 0.3322 0.3339 stable

0.973 0.23 0.5297 0.3494 unstable

1.057 0.23 0.3488 0.3494 stable

1.057 0.24 0.5627 0.3656 unstable

1.137 0.24 0.3646 0.3656 stable

1.137 0.25 0.5955 0.3826 unstable

1.213 0.25 0.3803 0.3826 stable

1.213 0.26 0.6289 0.4004 unstable

1.284 0.26 0.4002 0.4004 stable

1.284 0.27 0.6678 0.4190 unstable

continued on next page
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Table-3 (continued)

k0 α nαHαΓ m2Υ Status

1.353 0.27 0.4163 0.4190 stable

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
2.967 0.81 4.6689 4.8591 stable

2.967 0.82 8.4974 5.0847 unstable

2.980 0.82 4.9553 5.0847 stable

2.980 0.83 8.9503 5.3208 unstable

2.993 0.83 5.1832 5.3208 stable

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
3.131 0.95 8.7291 9.1729 stable

3.131 0.96 15.5450 9.5989 unstable

3.141 0.96 9.2194 9.5989 stable

3.141 0.97 16.3263 10.0445 unstable

3.151 0.97 9.6183 10.0445 stable

3.151 0.98 17.0215 10.5109 unstable

3.161 0.98 9.9092 10.5109 stable

3.161 0.99 17.6135 10.9990 unstable

3.170 0.99 10.8277 10.9990 stable

Similar to the previous cases, we have drawn the evolution of x,

y and z in time in figure (4.9), figure (4.10) and figure (4.11) respec-

tively. The dotted line means the system is under controlled.

Hence, from the above work out, we may conclude that the stable

system is obtained for a specific range of α with appropriate value

of the control term. As we increase the value of α, we have to fix

the value of k0 for which the expression (4.4.28) is satisfied and the
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Figure 4.9: Evolution of x in time
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Figure 4.10: Evolution of y in time
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Figure 4.11: Evolution of z in time

system becomes stable from unstable situation.

From the above three cases, we have also seen that the stability

of the system depends on the parameters α as well as c in terms of

p3 which have been shown by figure(4.12). In the first case, when

we have chosen p3 = 0.01341, the stability of the system is attained

if k0 = 2.319. But in case-II, we have taken k0 = 2.970 to meet

the stability condition (4.4.28) with p3 = 0.05405. For the last case,

by choosing p3 = 0.7967, we have reached the stable situation if

k0 = 3.17 for α ∈ (0, 1).

Hence, it is observed that the newly remodelled dynamical system

for glucose and insulin kinetics may be controlled with the addition

of a control term on the right hand side of the second equation of the

system (4.2.4).
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4.6 Conclusion

In this chapter, we have studied a minimal model for glucose-insulin

kinetics model theoretically and proposed a blood glucose control

mechanism. The study is of interest to both practical and theoreti-

cal fields as diabetes is rapidly becoming a serious disease world wide

and hence, investigation of the physiological process involving blood

glucose and insulin is gaining interest. The original minimal model

(4.1.1), which is a non-smooth dynamical system, has been modified

by replacing the non-smooth function with a smooth approximation

of the same. The resulting smooth system has been investigated for

its steady states and the stability properties of the system in the

neighbourhood of the steady states. In the event where the auto-

regulatory mechanism for blood glucose control fails, we consider a
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simple but elegant linear feedback based scheme for blood glucose

control. The critical value of the control parameter is determined.

For feedback gain beyond this value, it is guaranteed that the blood

glucose level will remain under control even if the self regulatory sys-

tem of the body fails. In the numerical simulation, we test the model

under different parameter sets. Assuming different values for the

feedback gain, we determine ranges for the physiological parameter

α (introduced while smoothing the non-smooth system) over which

the particular value of feedback gain will work. Such information

is of value to medical practitioners and pharmacists. Finally, it is

also shown that beyond the critical value, the system always remains

controlled. The scope of future work lies in better approximation

of the non-smooth system with smooth systems and investigation of

advanced and robust control methods for controlling blood glucose.
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Chapter 5

Complete Synchronization of

Chaos via Hybrid Feedback and

Tracking Control Algorithm

5.1 Introduction

At present, there are so many methods to control chaos, for example,

non-linear feedback control method [64], adaptive control method [46,

81, 68, 16], active control method [1], backstepping design method

[92] etc. Last twenty years, the ideas of chaos synchronization have

been developed by many scientists, namely, Pecora and Carroll [65],

Sun and Cao [81], Poria and Tarai [68], Lu and Chen [16] et. al.

and so on. In a mathematical sense, if lim
t→∞
|xi(t) − yi(t)| = 0 for

i = 1, 2, 3, ......., n with the initial conditions (x1(0), x2(0), ..., xn(0))

and (y1(0), y2(0), ..., yn(0)) where (x1, x2, ..., xn) and (y1, y2, ..., yn) are

the state variables of the first (drive) and second (response) systems

respectively, then we can say, the two systems are synchronized.

In this communication, we study the synchronization of coupled

Sprott model L via hybrid feedback control method [60] and also via
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tracking control method [60]. The study is supported by numerical

simulation.

5.2 Description of the Hybrid Feedback Controller

Any non-linear dynamical system can be written as

ẋ = Ax+B[ϕ(x)] (5.2.1)

where x ∈ Rn, A ∈ Rn×n, B ∈ Rn×n, ϕ : Rn → Rn is non-linear vector

function.

We consider a new dynamical system which is coupled with the sys-

tem (5.2.1) as given below :

ẏ = Ay +B[ϕ(y) + u] (5.2.2)

where u is the controller which controls the motion of the system

(5.2.2).

We also consider a error term e defined as

e = (e1, e2, e3, ........, en)
T

= (x1 − y1, x2 − y2, x3 − y3, ...., xn − yn)T ,

where x = (x1, x2, x3, ........, xn)
T ,

y = (y1, y2, y3, ........, yn)
T .

Subtracting (5.2.2) from (5.2.1), one easily gets the dynamical sys-

tems of synchronization error as

ė = (A−BK)e (5.2.3)

where K is a scalar matrix.
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In case of identical synchronization of the two systems (5.2.1) and

(5.2.2), the feedback controller u must be chosen appropriately.

Let us take, u = u1 + u2 such that

u1 = ϕ(x)− ϕ(y)

u2 = K(x− y)
(5.2.4)

where K =


k1 0... 0

0 k2... 0

... ... ...

... ... ...

0 0... kn

 is the feedback matrix.

Clearly, u1 is a non-linear controller and u2 is a linear controller, so

u is the hybrid controller.

Hence, by Yang. et. al [90], the error system (5.2.3) is asymptot-

ically stable at origin if all the eigen values of the matrix (A− BK)

has negative real parts.

Then, the two systems (5.2.1) and (5.2.2) are identically synchro-

nized.

5.3 Chaos Synchronization of Sprott Model L via

Hybrid Feedback Control

The Sprott Model L [49] is a given by

ẋ1 = x2 + αx3

ẋ2 = βx21 − x2
ẋ3 = γ − x1

 (5.3.5)
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where α, β, γ are positive constants.

Sprott found that the system (5.3.5) is chaotic if α = 3.9, β =

0.9, γ = 1.

The system (5.3.5) can be written as

ẋ = Ax+B[ϕ(x)]

where

x =

 x1

x2

x3

 , A =

 0 1 α

0 −1 0

−1 0 0

 ,

B =

 1 0 1

0 β 0

γ 0 0

 , ϕ(x) =

 1

x21

−1


Therefore,

A−BK =

 −k1 1 α− k3
0 −(1 + βk2) 0

−(1 + γk1) 0 0

 ,

where

k =

 k1 0 0

0 k2 0

0 0 k3


To make all the eigen values of (A−BK) are negative,

we consider k1 = 15, k2 = 5, k3 = 3.
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Now, using(5.2.4), we get,

u1 =

 0

x21 − y21
0

 ,

and

u2 =

 k1(x1 − y1)
k2(x2 − y2)
k3(x3 − y3)


Therefore,

u =

 k1(x1 − y1)
x21 − y21 + k2(x2 − y2)

k3(x3 − y3)


Then,

u+ ϕ(y) =

 k1(x1 − y1) + 1

x21 + k2(x2 − y2)
k3(x3 − y3)− 1


Therefore, the response system(5.2.2) is given by,

ẏ = Ay +B[ϕ(y) + u] ẏ1

ẏ2

ẏ3

 =

 0 1 α

0 −1 0

−1 0 0


 y1

y2

y3

+

 k1(x1 − y1) + k3(x3 − y3)
β[x21 + k2(x2 − y2)]
γ[k1(x1 − y1) + 1]


It yields

ẏ1 = y2 + αy3 + k1(x1 − y1) + k3(x3 − y3)

ẏ2 = −y2 + βx21 + k2β(x2 − y2)

ẏ3 = −y1 + γ + k1γ(x1 − y1)

 (5.3.6)
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5.3.1 Numerical Simulation

Let us take x(0) = (1, 1.1,−0.231) and y(0) = (1, 0, 1) as the initial

conditions for the system (5.3.5) and (5.3.6) respectively.

We consider also the initial condition for the synchronization error

as e(0) = (1, 1, 0).

Figure (5.1), figure (5.2) and figure (5.3) represent the trajectories

of the driving system and the responding system.

Figure (5.4) represents the synchronization error with respect to

time. From figure (5.4), we can easily say that the synchronization

error goes to zero after some time. Hence, we achieved the identical

synchronization between the system (5.3.5) and system (5.3.6).

5.4 Chaos Synchronization of Sprott Model L via

Tracking Control

We consider the non-linear dynamical system (5.3.5) as the driving

system to apply tracking control method.

Then, the system (5.3.5) can be written as

ẋ = Ax+B[ϕ(x)] (5.4.7)

where

x =

 x1

x2

x3

 , A =

 0 1 α

0 −1 0

−1 0 0

 ,
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Figure 5.1: Time history of x1 and y1
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Figure 5.2: Time history of x2 and y2
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Figure 5.3: Time history of x3 and y3
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Figure 5.4: Time evolution of synchronization error e
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B =

 1 0 1

0 β 0

γ 0 0

 , ϕ(x) =

 1

x21

−1


Let us consider the response system as given below

ẏ = Ay +B[ϕ(y)] + U ′ (5.4.8)

where U ′ = (u′1, u
′
2, u
′
3)

T ∈ R3 is the control variable and y ∈ R3

denote the state variables of the response system.

Hence, the response system can be written as

ẏ1 = y2 + αy3 + u′1

ẏ2 = βy21 − y2 + u′2

ẏ3 = γ − y1 + u′3

 (5.4.9)

Let us take the synchronization error e as

ei = yi − xi, i = 1, 2, 3.

Therefore, the error system is given by,

ė1 = e2 + αe3 + u′1

ė2 = βy21 − βx21 − e2 + u′2

ė3 = −e1 + u′3

 (5.4.10)

Let us consider Lyapunov function V (e) = 1
2e

Te, where V(e) is a

positive definite function.

If the controllers are chosen in the following way

u′1 = −e1 − e2 − αe3
u′2 = −βy21 + βx21

u′3 = e1 − e3

 (5.4.11)
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then, the error dynamical system (5.4.10) reduces to

ė = He, where e = (e1, e2, e3)
T

and

H =

 −1 0 0

0 −1 0

0 0 −1


Therefore, V̇ (e) < 0. Hence, ||e(t)|| → 0 as t → ∞. Thus the

synchronization is achieved globally and asymptotically.

5.4.1 Numerical Simulation

Here, we consider the initial conditions of the system (5.4.7) and

(5.4.9) as x(0)= (1, 1.1, -0.231) and y(0) = (1, 0, 1). We choose the

value of parameters as α = 3.9, β = 0.9, γ = 1. The error system

initializes as e(0) = (1, 1, 0). Figure (5.5), figure (5.6) and figure

(5.7) represent the trajectories of the xi, state variable of driving

system and yi, state variable of the responding system, for i = 1, 2, 3.

We plot the time evolution of the synchronization errors in Figure

(5.8). In this figure, it is observed that all the errors go to zero after

certain time.

Therefore, the synchronization is established between the systems.

5.5 Conclusions

The two methods, hybrid feedback control and the tracking control

are successfully applied to chaotic Sprott Model L and we have found
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Figure 5.6: Time history of x2 and y2
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Figure 5.7: Time history of x3 and y3
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Figure 5.8: History of synchronization error e w.r.t. time
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the coupled synchronization Sprott model L for the both cases. This

synchronization schemes are based on Lyapunov stability theorem.

These results can be used in many areas such as chemical reactions,

neural networks, electrical engineering and secure communication etc.
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Chapter 6

Robust Antisynchronization of

Chaos using Sliding Mode

Control Strategy

6.1 Introduction

Synchronization of non-linear chaotic dynamical system has been a

hotbed of active research in the field of Physics, Mathematics and En-

gineering Sciences. Its application in fields ranging from robotics and

secure communication to cognitive sciences and social network makes

these investigations extremely contemporary and essential. The con-

cept of anti-synchronization dates back to the time of Huygens when

he reported anti-phase locking of two different pendulums[36]. The

study of synchronization in chaotic systems was a natural extension

of this problem, that cuts across the fields of mathematics, engineer-

ing and mechanics. In this vast body of research on synchronization,

analysis of anti-synchronization occupies a very important place -

partly due to its historical roots and partly due to its natural pres-

ence in different systems as observed in different experiments.
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In coupled oscillators possessing inverse symmetry, the inverse be-

ing taken in additive sense, anti-synchronization (AS) sets in quite

naturally with the induction of a simple diffusive coupling. While

simple coupling is generally sufficient to synchronize such systems

possessing high degree of symmetry, synchronization of asymmet-

ric and non-identical systems poses a major challenge. In chaotic

systems like the Lorenz or Rössler systems which lack such special

kind of symmetry, anti-synchronization becomes a highly non-trivial

problem. Li and Zhou had applied an active control method[42]

to anti-synchronize two non-identical systems. Zhang and Zu [95]

had considered active and adaptive control methods for this purpose

while Ahn had used the H∞ approach[2]. Fairly recently, Jackson and

Grosu introduced open plus closed loop control(OPCL) [30] method

for the control of chaos. In [25] and [18], the OPCL method was

employed as an effective tool for mixed synchronization and the pa-

pers discussed anti-synchronization as a special case of the results

obtained therein. To sum up, the techniques of Lyapunov function

stability (LFS) and Open-plus-closed loop control (OPCL) and their

variants have been the standard tools for achieving AS in chaotic

systems for quite some time. These methods do not impose any

symmetry restrictions on the systems. The additional advantage of

OPCL technique is its ability to accommodate mismatches and small

amplitude disturbances. In this chapter, we propose a sliding mode

control based mechanism[84] for achieving the same goal.

The benefits of using sliding mode control action has widely been

discussed in journals of engineering science [10, 83, 93]. Its inherent

advantages of easy realization, fast response and insensitivity to vari-
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ation in plant parameters or external disturbances are instrumental

in its choice as a viable alternative to OPCL and LFS techniques.

Our method considers a pair of coupled non-linear systems in all

generality with no restrictions, except the smoothness requirements

that are necessary for the existence of solutions to the dynamical

equations of the system[33]. Thus, the proposed scheme works for a

general class of non-linear systems. Like the OPCL and LFS tech-

niques, no symmetry restrictions are imposed on the class of systems

being considered. In this respect, our approach is highly generalized.

A planar sliding surface is designed (Section 6.2.1) across which the

control action varies discontinuously, with the signum function char-

acterizing the discontinuity. The basic advantage of sliding mode

control action is its finite time convergence[69] onto the synchroniza-

tion manifold, proved in Section 6.2.4. This is a clear advantage of

our scheme over other prevalent techniques like LFS, OPCL etc. be-

cause a finite time bound is available for at least some portion of the

anti-synchronization process. The results are not just asymptotic.

This bound is entirely determined by controller parameters and can

be modified at will through the tuning of the controller. Moreover,

the existence of upper bound on time also imposes an upper bound

on the region of synchronization manifold where the trajectories hit,

or enter, the manifold.

In most real-life systems, noise, disturbance, error in measure-

ment of parameters and system states, etc. lead to collapse of the

ideal framework on which the synchronization scheme was based.

Robustness of the controller [89] guarantees stable synchronization

irrespective of such perturbations. Our proposed controller is robust
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to all forms of bounded perturbations. It is a strong point of our

method and it has been proved in Section 6.2.5. Boundedness of the

disturbance or perturbation is the only assumption made to prove the

result[69] . Importantly, robustness of the controller can be achieved

by the tuning of exactly one controller parameter and introduction

of a separate control vector. The control vector tracks the perturba-

tion on the synchronization manifold only. Unlike most of the known

methods, constant tracking of the disturbance is not necessary for

our controller.

The chapter has been structured as follows. Section 6.2 puts forth

all the important results of the chapter. The feasibility of the sliding

mode control design is established in Sections 6.2.1, 6.2.2 and 6.2.3.

The most important characteristics of finite time convergence and

robustness have been proved in Sections 6.2.4 and 6.2.5 respectively.

The Sections 6.3 and 6.4 establish our theoretical findings by means

of numerical simulation. In Section 6.3, we have chosen Sprott sys-

tem [52] which is chaotic and lacks inverse symmetry. Our designed

controller anti-synchronizes it with another identical Sprott system.

In Section 6.4, we choose another famous chaotic system - the Rössler

system[71] which also lacks inverse symmetry and anti-synchronize it

with identical Rössler system. These sections also verify the robust-

ness of the scheme under different bounded perturbations. Section

6.5 discusses the simulation results and Section 6.6 contains our con-

cluding remarks.
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6.2 Sliding Mode Control Strategy for

Anti-Synchronization

Unidirectional synchronization necessitates the introduction of a master-

slave(or, drive-response) configuration in a system of coupled dynam-

ical systems. Without any loss of generality, a system of two coupled

non-linear systems may be written as

Ẋ = AX + ϕ(X) ← Drive system

Ẏ = BY + ψ(Y ) + U ← Response system
(6.2.1)

where X,Y ∈ Rn, A,B ∈ Rn×n and ϕ, ψ, U : Rn → Rn are vector

functions on Rn. U represents the external forcing terms which bring

about synchronization. In general, U = uc + us where uc is the cou-

pling function that constitutes the driving mechanism and us is the

external control input that ensures synchrony between the two sys-

tems. In the following section, we propose our method for designing

of these components, and hence, U . The suffix ′s′ in us is indicative of

our goal of designing the control input through sliding mode control

strategy.

To this end, let us define

e = Y +X

as the vector representing anti-synchronization error, where

e = (e1, e2, ........, en)
T ,

X = (x1, x2, ........, xn)
T ,

and Y = (y1, y2, ........, yn)
T .
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The evolution equation of error is then given by

ė = Ae+ F (X,Y ) + uc + us, (6.2.2)

where F (X,Y ) = ϕ(X) + ψ(Y ) + (B − A)Y .

Considering the non-linear coupling function

uc = −F (X, Y )

and the control term

us = Ku

where K ∈ Rn×1 is a constant vector and u ∈ R is the scalar control

input to be designed, the system (6.2.2) reduces to

ė = Ae+Ku (6.2.3)

Here, K is chosen such that the pair (A,K) is controllable.

6.2.1 Design of the Sliding Surface

The sliding surface is chosen as a linear function of the error states

ei giving a hyperplane s(e) = Ce which contains the targeted state

e = 0. Here C ∈ R1×n is a constant row vector.

The synchronization manifold is chosen as

Γ = {e ∈ Rn : s(e) = 0}

This manifold is required to be invariant under the flow of the error

dynamics (6.2.3).

According to sliding mode control strategy, the control input

u = ueq + u0
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where ueq is the equivalent controller that ensures invariance of the

manifold Γ and u0 is discontinuous component of the control law

designed such that :

u = u+, s > 0

u = u−, s < 0

u = ueq, s = 0

(6.2.4)

The condition of invariance of Γ is ṡ = 0 when s = 0, dot repre-

senting differentiation with respect to time. Imposing this condition

on equation (6.2.3),

ueq = −(CK)−1CAe (6.2.5)

This places the condition that CK ̸= 0 for the existence of its inverse.

6.2.2 Stability on the Synchronization Manifold

On the synchronization manifold Γ, the evolution equation of error

system becomes

ė = (I − (CK)−1KC)Ae

or, ė = He
(6.2.6)

where H = (I − (CK)−1KC)A and I is the identity matrix of order

n.

Let us define the Lyapunov function L = 1
2e

Te, which is clearly

positive definite on Rn.

Then,

L̇ = eTAe+ ueqe
TK

= eT [I − (CK)−1KC]Ae
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is negative definite if and only if, the matrix

H = [I − (CK)−1KC]A

is negative definite. Thus, the vectors K and C should be chosen

such that

1. CK ̸= 0

2. H = [I − (CK)−1KC]A is negative definite.

6.2.3 Reachability Condition

In order to ensure global synchronization, it is necessary to estab-

lish that the synchronization manifold Γ is reachable for any initial

condition s(0). To this end, let us define V : R→ R as

V (t) =
1

2
s2

which is a positive definite function on R.
If V̇ < 0 for all s ̸= 0, it would imply convergence of system’s

trajectories onto the manifold Γ. For computing V̇ , it is necessary to

find ṡ.

The control input u0 will now arise from the law of evolution of

s(t), which we choose as a constant plus proportional rate reaching

law

ṡ = −δsgn(s)− ωs, (6.2.7)

where δ, ω are positive real constants and sgn is the signum function.

Then, clearly

V̇ = sṡ = −ωs2 − δ s sgn(s) < 0, for all s ̸= 0
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Eliminating ṡ from (6.2.3) and (6.2.7),

ṡ = Cė

or, − δsgn(s)− ωs = C(Ae+Ku)

or, (CK)u = −[CAe+ ωs+ δsgn(s)]

or, (CK)u = −[C(ωI + A)e+ δsgn(s)]

which yields

u = −(CK)−1[C(ωI + A)e+ δsgn(s)]. (6.2.8)

Hence, we are now in a position to conclude that the two systems

X and Y attain stable anti-synchronization globally. The sliding

mode control input which brings about anti-synchrony is

u = −(CK)−1[C(ωI + A)e+ δsgn(s)]

← Control Input u
(6.2.9)

Having designed the sliding mode controller, we now establish two

of the most important characteristics of our synchronization scheme:

Finite time convergence onto the synchronization manifold and ro-

bustness of the controller towards bounded disturbances and noises.

6.2.4 Finite Time Convergence

Before starting the proof, we define ||s(t)|| =
√
s(t).s(t). Then,

d

dt
||s|| = sṡ

||s||
≤ −ω||s|| − δ.

Integrating over [0, t],

||s(t)|| ≤ ||s(0)||exp(−ωt)− δ

ω
[1− exp(−ωt)] (6.2.10)
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From here, it is now easy to observe that if

tc =
1

ω
ln(1 +

ω

δ
||s(0)||),

then ||s(t)|| attains the value zero for some t ≤ tc.

From the invariance of manifold Γ, we can guarantee ||s(t)|| = 0

for all t > tc. Hence, we ensure finite time convergence onto the

synchronization manifold. Tuning of controller parameters δ and ω

allows us to adjust the time of reaching Γ. Moreover, the bound-

edness of ||s|| additionally restricts the region where trajectories hit

Γ. This ensures quick convergence to the desired target e = 0. In

contrast to other prevalent control methods, here an estimated time

of convergence for at least some part of the synchronization process

is explicitly available.

6.2.5 Robustness Analysis

In order to analyze the robustness, we consider a coupled non-linear

system of the form (6.2.1) along with unmeasured disturbances

d1(X, t, P ) and d2(Y, t, Q), where P and Q represent the hidden vari-

ables. They account for any factors that have not been accounted for

in the system models or in the controller but can disturb the function-

ing of the system, e.g.- mechanical vibrations, environmental factors,

noise, parameter uncertainties, etc. Other factors like error in system

state measurement or due to mismatches are determined by X,Y, t.

The only assumptions regarding d1 and d2 are their boundedness re-

strictions : ||d1||∞ < ∞, ||d2||∞ < ∞ where ||.||∞ indicates uniform

norm over Rn. It will be seen that the robustness of the controller

comes about through simple tuning of the controller parameter ( δ
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is increased to δ + 2M) and introduction of a control vector. The

control vector tracks the external perturbation. But in contrast to

most of the other methods in the literature, constant tracking of noise

is not necessary. The control vector comes into action only on the

sliding manifold.

As outlined before, choosing coupling function

vc = −F (X, Y )

and the control vector Z, the system reduces to

ė = Ae+Kv + d1 + d2 + Z, (6.2.11)

where K ∈ Rn×1 is a constant vector, v is the scalar input function

and Z is the control vector, a vector-valued function.

Consider the situation when the system has reached the synchro-

nization manifold. Then, v = veq and Z ̸= 0.

Writing v = veq + v0, again we choose

veq = −(CK)−1CAe,

where :

1. CK ̸= 0

2. H = [I − (CK)−1KC]A is negative definite

and Z is chosen as −[d1 + d2].

Then, on the synchronization manifold Γ,

ė = He

and hence e(t) satisfies lim
t→∞

e(t) = 0 [33]. Hence, the stability of the

manifold has been established.
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In order to ensure reachability, we modify the reaching law as

ṡ = −ωs− (δ + 2M)sgn(s),

where ω and δ are positive and

M = max{|Cd1|, |Cd2|} > 0.

The control input then takes the form

v = −(CK)−1[CAe+ ωs+ (δ + 2M)sgn(s)].

When s ̸= 0, Z is chosen to be 0. Thus, Z forms another component

of the discontinuous control.

Using this control input in (6.2.11), if we now define Lyapunov

function V = 1
2s

2 and compute its time derivative,

V̇ = −ωs2 − δ s sgn(s) + s(Cd1 −M sgn(s))

+ s(Cd2 −M sgn(s))

which is clearly negative if s ̸= 0.

Thus, the modified sliding mode control input is :

v = −(CK)−1[C(A+ ωI)e+ (δ + 2M)sgn(s)]

← Control Input v,

Z = −[d1 + d2]δ0(s)

← Control Vector Z,

(6.2.12)

where δ0(s) is the Dirac delta function which takes value 1 when

s = 0 and value 0 elsewhere.

The proposed scheme thus ensures global anti synchronization be-

tween X and Y in the presence of bounded disturbance and noise.

Notably, the control doesn’t require tracking of the noise all through

the control action. Tracking of the noise activates only on the syn-

chronization manifold because δ0(s) = 0 outside Γ.
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6.2.6 Chattering-free Controller

Due to the discontinuity in control action, the error keeps oscillating

about the synchronization manifold at a very high frequency with

small amplitude producing an effect called chattering. Such an ef-

fect is undesirable, specially when noise is present in the system, as

the chattering gets in the way of elimination of noise by tuning the

controller. In order to get rid of this high-frequency chatter of the

error about the sliding manifold instead of settling down to the zero

equilibrium state, the discontinuous portions of the controllers are

replaced by their continuous analogues. Thus, the chattering-free

controller (in absence of any disturbance/noise), takes the form :

u = −(CK)−1[C(ωI + A)e+ δtanh(s)]

← Control Input u
(6.2.13)

The robust chattering-free controller in presence of disturbances

has the form:

v = −(CK)−1[C(A+ ωI)e+ (δ + 2M)tanh(s)]

← Control Input v,

Z = −[d1 + d2](1− tanh2(s))

← Control Vector Z.

(6.2.14)
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6.3 Anti-synchronization of identical Sprott sys-

tem

We first consider the non-linear chaotic dynamical Sprott system [52]

as a drive system, which is given by

ẋ1 = x2 + αx3

ẋ2 = βx21 − x2
ẋ3 = γ − x1

 (6.3.15)

where α, β, γ are all positive parameters.

In matrix form, system of equation (6.3.15) can be written as

ẋ = Ax+ ϕ(x)

where

x =

 x1

x2

x3

 ∈ R3, ϕ(x) =

 0

βx21

γ

 ∈ R3

and

A =

 0 1 α

0 −1 0

−1 0 0


Then, the response system coupled with the drive system (6.3.15)

can be taken as

ẏ = By + ψ(y) + U,
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where

y =

 y1

y2

y3

 ∈ R3, is the state vector of the response system,

U =

 U1

U2

U3

 ∈ R3, is the control parameter and

ψ(y) = ϕ(y) =

 0

βy21

γ

 ∈ R3,

and B = A.

Thus, the response system is

ẏ1 = y2 + αy3 + U1

ẏ2 = βy21 − y2 + U2

ẏ3 = γ − y1 + U3

 (6.3.16)

Now, we construct the anti-synchronization error e = (e1, e2, e3)
T as

ei = yi + xi, i = 1, 2, 3.

Using (6.2.2), the dynamical system of anti-synchronization error is

ė1 = e2 + αe3 + U1

ė2 = −e2 + βy21 + βx21 + U2

ė3 = −e1 + 2γ + U3

 (6.3.17)

Let us take

U = uc + us = Ku− F (x, y) (6.3.18)
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where
F (x, y) = ϕ(x) + ψ(y) + (B − A)y

=

 0

β(x21 + y21)

2γ

 (6.3.19)

To make (A,K) controllable, we take K as

K = (1 2 1)T (6.3.20)

Following the Section 6.2.1, the sliding manifold s is taken as

s(e) = Ce =
3∑

i=1

Ciei,

where Ci are to be calculated.

To make the coupled Sprott system (6.3.15) and (6.3.16) globally

asymptotically anti-synchronized, we choose,

C = (−3 − 24 2)

To perform robustness analysis for the coupled Sprott system, we

take,

d1 = (0.01sin(t), 0, 0.02cos(t))T

and d2 = (0.02sin(t), 0, 0.01cos(t))T .
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Now, by taking ω = 2.5 and δ = 0.01, we have,

u = −0.1939e1 − 0.7959e2 − 0.1367e3 − 2.0408× 10−04sgn(s)

← Control Input u,

u = −0.1939e1 − 0.7959e2 − 0.1367e3 − 2.0408× 10−04tanh(s)

← Chattering-free controller,

v = −0.1939e1 − 0.7959e2 − 0.1367e3 − 0.0818tanh(s)

← Robust Chattering-free controller.

(6.3.21)

Hence, using (6.3.19), (6.3.20) and (6.3.21), one can evaluate U from

(6.3.18) which is the required controller for anti-synchronization of

the systems (6.3.15) and (6.3.16).

6.4 Anti-synchronization of identical Rössler sys-

tem

We now consider the famous Rössler system [71] as a drive system,

which is given by

ẋ1 = −x2 − x3
ẋ2 = x1 + ax2

ẋ3 = b+ x3(x1 − c)

 (6.4.22)

where a, b, c are all positive parameters.

Then, the system of equation (6.4.22) can be written as

ẋ = Ax+ ϕ(x)
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where

x =

 x1

x2

x3

 ∈ R3, ϕ(x) =

 0

0

b+ x1x3

 ∈ R3

and

A =

 0 −1 −1
1 a 0

0 0 −c


Then, the response system coupled with the drive system (6.4.22)

can be taken as

ẏ = By + ψ(y) + U,

where

y =

 y1

y2

y3

 ∈ R3, is the state vector of the response system,

U =

 U1

U2

U3

 ∈ R3, is the control parameter and

ψ(y) = ϕ(y) =

 0

0

b+ y1y3

 ∈ R3 and B = A.

Thus, the response system is

ẏ1 = −y2 − y3 + U1

ẏ2 = y1 + ay2 + U2

ẏ3 = b− cy3 + y1y3 + U3

 (6.4.23)
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Now, we construct the anti-synchronization error e = (e1, e2, e3)
T as

ei = yi + xi, i = 1, 2, 3.

Using (6.2.2), the dynamical system of anti-synchronization error is

ė1 = −e2 − e3 + U1

ė2 = e1 + ae2 + U2

ė3 = −ce3 + 2b+ x1x3 + y1y3 + U3

 (6.4.24)

In this case,

U = uc + us = Ku− F (x, y) (6.4.25)

where
F (x, y) = ϕ(x) + ψ(y) + (B − A)y

=

 0

0

2b+ x1x3 + y1y3

 (6.4.26)

To make (A,K) controllable, let us take K as

K = (−4 11 5)T (6.4.27)

To make the coupled Rössler System (6.4.22) and (6.4.23) globally

asymptotically anti-synchronized, we choose,

C = (16 − 12 − 1)

In case of robust controller for the coupled Rössler system, we take,

d1 = (0.01sin(t), 0, 0.02cos(t))T

& d2 = (0.02sin(t), 0, 0.01cos(t))T .
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By taking ω = 3 and δ = 0.25, we have,

u = 0.1791e1 − 0.2706e2 − 0.0662e3 + 0.0012sgn(s)

← Control Input u,

u = 0.1791e1 − 0.2706e2 − 0.0662e3 + 0.0012tanh(s)

← Chattering-free controller,

v = 0.1791e1 − 0.2706e2 − 0.0662e3 + 0.0361tanh(s)

← Robust Chattering-free controller.

(6.4.28)

Hence, using (6.4.26), (6.4.27) and (6.4.28), one can evaluate U from

(6.4.25) which is the required controller and the systems (6.4.22) and

(6.4.23) are anti-synchronized.

6.5 Numerical Simulation Results

Numerical simulations have been performed using fourth-order Runge-

Kutta method in MATLAB.

Chaotic nature of the Sprott system is seen for α = 3.9, β =

0.9, γ = 1. These values have been used in Section 6.3.

The initial conditions of the systems (6.3.15) and (6.3.16) are se-

lected as x(0) = (1, 0.1, 0.5) and y(0) = (2, 0.1, 0.5) respectively. At

t = 0, e(0) = (3, 0.2, 1).

In Section 6.4, we have chosen Rössler system with a = b =

0.2 & c = 5.7. For numerical simulation, we have considered

x(0) = (2,−1, 2) and y(0) = (−8, 6,−5) for the systems (6.4.22)

and (6.4.23) respectively. At t = 0, e(0) = (−6, 5,−3).
In figure (6.1) and figure (6.2), we observe anti-synchronization

between the states of the drive system and the states of the response
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Figure 6.1: Anti-synchronization of coupled Sprott system
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Figure 6.2: Anti-synchronization of coupled Rössler system
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Figure 6.3: Anti-synchronization of coupled Sprott system for chattering free con-
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Figure 6.4: Anti-synchronization of coupled Rössler system for chattering free con-
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Figure 6.5: Anti-synchronization of coupled Sprott system for chattering free con-

troller in presence of disturbance with M=2
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Figure 6.6: Anti-synchronization of coupled Rössler system for chattering free con-

troller in presence of disturbance with M=3.5
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system. These have been obtained by using the discontinuous control

input u. Using the chattering-free controller, we have figure (6.3) and

figure (6.4). For systems having bounded disturbance, the robust

chattering-free controller is applied to get figure (6.5) and figure (6.6)

represents the anti -synchronization between the states of the drive

system and the states of the response system.

The anti-synchronization error with respect to time is shown in

figure (6.7) and figure (6.8) for coupled Sprott system and coupled

Rössler system respectively. It is seen that the anti-synchronization

errors reduce rapidly to zero (after 30 units of time approximately

in the figure (6.7) for coupled Sprott system, after 12 units of time

approximately in the figure (6.8) for coupled Rössler system). The

corresponding diagrams with chattering-free controller are given in

figure (6.9) and figure (6.10). Finally, applying the robust chattering-

free controller to systems with bounded disturbance, we obtain figure

(6.11) and figure (6.12).

As per theory, the sliding variable s should go to zero as t →∞.

This is investigated in figure (6.13) and figure (6.14) respectively.

But due to the discontinuity in control action, s does not exactly

reach zero - it keeps oscillating about the sliding manifold with high

frequency and small amplitude producing an effect called chattering

of the controller. This can be avoided by using the chattering-free

controller, as observed in figure (6.15) and figure (6.16) respectively.

Lastly, figure (6.17) and figure (6.18) show the sliding variable with

respect to time for robust chattering-free controller with the tuning

factor M = 2 and M = 3.5 respectively.

All of the figures derive a common statement, that is, finite time
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Figure 6.7: Anti-synchronization error w.r.t. time for Sprott system
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Figure 6.8: Anti-synchronization error w.r.t. time for Rössler system
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Figure 6.9: Anti-synchronization error w.r.t. time for Sprott system with chatter-

ing free controller
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Figure 6.10: Anti-synchronization error w.r.t. time for Rössler system with chat-

tering free controller

145



0 10 20 30 40 50
−3

−2

−1

0

1

2

3

4

→ t

 

 
e

1

e
2

e
3

Figure 6.11: Anti-synchronization error w.r.t. time with M=2 for Sprott system
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Figure 6.12: Anti-synchronization error w.r.t. time with M=3.5 for Rössler system
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Figure 6.13: Time evolution of the sliding variable for Sprott system
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Figure 6.14: Time evolution of the sliding variable for Rössler system
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Figure 6.15: Time evolution of the sliding variable for Sprott system with chatter-

ing free controller
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Figure 6.16: Time evolution of the sliding variable for Rössler system with chat-

tering free controller
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Figure 6.17: Time evolution of the sliding variable with M=2 for Sprott system
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Figure 6.18: Time evolution of the sliding variable with M=3.5 for Rössler system
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convergence onto synchronization manifold and stable asymptotic

convergence to the zero error state. Hence, we can conclude that

the anti-synchronization between the states of drive system and the

states of response system is achieved.

6.6 Conclusion :

In this chapter, we propose a sliding mode control-based strategy

to anti-synchronize a general class of chaotic systems. Unlike the

conventional diffusive coupling approach, our method accommodates

all kinds of systems without imposing any symmetry restrictions. In

fact, symmetry of the systems is not even a determining factor in the

method as it is also applicable for systems having widely different

dynamical behaviour. In this respect, our controller is comparable

to other well-known techniques like the OPCL and LFS that are cur-

rently used to attain AS. In addition, the scheme we propose has two

additional benefits of finite time convergence and robustness. Fi-

nite time convergence produces a clearly defined upper bound for the

time taken to reach the synchronization manifold. Thus, the results

are global and exact; not just asymptotic. Robustness to bounded

perturbations comes about through the tuning of a controller param-

eter and introduction of a control vector based on partial tracking of

the disturbances. To sum up, the proposed controller requires a non-

linear coupling function to couple the two systems and a sliding mode

control input. A control vector is required in case of perturbations

in the system. As a result, we have a very elegant and concise con-

troller that is quite easy to implement, as has been widely discussed
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in engineering science journals over quite a few years. The controller

easily accommodates bounded disturbance. The discontinuous con-

trol may also be replaced by a continuous equivalent which gets rid of

the chattering phenomenon observed in many discontinuous control

input systems.

In order to support our findings, we have applied our method

to anti-synchronize two identical coupled Sprott systems and two

identical coupled Rössler systems. The results indicate successful

realization of the proposed method. In both the above situations,

one can easily observe that the error term reduces to zero after a

short time interval which is the benefit of sliding mode controller

design. Our method guarantees globally stable anti-synchronization

which has been established theoretically and through simulation. As

practical implementation of sliding mode methods has become quite

commonplace nowadays, we believe that our proposed method would

prove to be useful in various disciplines like neural networks, informa-

tion processing, chemical reactions, biological systems and quantum

physics etc.
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Chapter 7

Linear Generalized Unidirectional

Synchronization

7.1 Introduction

Sprott model L [79] is a very simple chaotic dynamical system. It

is bounded. This system has three parameters and one non-linear

term. At present time, there are so many synchronization method to

obtain a chaotic synchronized system, for example, feedback control

[64], active control [91], adaptive control [81], open plus closed loop

coupling method [72] etc. In this chapter, we will make a new chaotic

system whose behavior is closely related to the behavior of the Sprott

model L and we call the new chaotic system as synchronized system.

This synchronization idea for a chaotic system was introduced by

Pecora and Carroll [65] in 1990. After five years, Rulkov et.al. [73]

generalized the concept of identical synchronization for unidirection-

ally coupled dynamical systems. Unidirectionally coupled systems
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are given by
−̇→
X = F (

−→
X )

−̇→
Y = G(

−→
X,
−→
Y )


In this chapter, we are studying the unidirectionally coupled Sprott

model L through linear transformation. Here, we will analyze the

behavior of the synchronized system using numerical simulation.

7.2 Discussions of Linear Generalized Synchro-

nization

In matrix form, any dynamical system can be written as

−̇→
X = A

−→
X + ϕ(

−→
X ) (7.2.1)

where A is a constant matrix of order n× n,
−→
X ∈ Rn and ϕ : Rn →

Rn.

This system (7.2.1) is known as driving system. The response

system is obtained by changing the term ϕ(
−→
X ) and the unidirectional

synchronization scheme is given by

−̇→
X = A

−→
X + ϕ(

−→
X ) : Driving System

−̇→
Y = A

−→
Y +Bϕ(

−→
X ) : Response System

(7.2.2)

where B is a matrix of order n× n.
The two dynamical systems in (7.2.2) are in a state of generalized

synchronization through linear transformation

−→
Y = B

−→
X (7.2.3)

if and only if AB = BA and all the eigen values of A have negative

real parts [29].
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For a given matrix A, we can evaluate the matrix B in many ways

such that they commute each other. Hence, there is possibility to

make several forms of linear generalized synchronization [67] between

two chaotic systems.

In this chapter, we choose three types of B, such that AB = BA

holds, as follows :

1. B is a scalar matrix of the same order as A

2. B = inverse of A

3. B = An, where n is a positive integer.

7.3 Generalized Synchronization of

Sprott Model L

Here, we will construct the linear generalized synchronized system

for the Sprott model L [50]. The dynamical system of Sprott model

L is given by

ẋ1 = x2 + αx3

ẋ2 = βx21 − x2
ẋ3 = γ − x1

 (7.3.4)

where α, β, γ are three positive parameters.

The system(7.3.4) can be written in the form of (7.2.1) as

−̇→
X = A

−→
X + ϕ(

−→
X ) (7.3.5)

where
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A =

 −1 1 0

0 −1 0

0 0 −1

 ,
−→
X =

 x1

x2

x3

 ,

and

ϕ(
−→
X ) =

 x1 + αx3

βx21

γ − x1 + x3


Obviously, A is negative definite matrix.

Therefore, all the eigen values of A are negative.

We consider the response system as

−̇→
Y = A

−→
Y +Bϕ(

−→
X ) (7.3.6)

The driving system of Sprott model L (7.3.5) and the response system

of Sprott model L (7.3.6) are in a state of generalized synchronization

if AB = BA.

7.4 Results and Discussions

In this section, we will get simulation results for different forms of B.

Sprott found that the system (7.3.4) is chaotic when α = 3.9, β =

0.9 and γ = 1.

To solve the coupled driving and response Sprott model L, we will

use Runge-Kutta method of fourth order.

(0.25, 0,−0.25) and (0, 0.25,−0.25) are the initial conditions for the

driving system and the response system respectively.
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Case-I : Let us consider

B =

 k 0 0

0 k 0

0 0 k

 ,

where k( ̸= 0) is a real number.

Therefore, all the conditions for synchronization are satisfied since

AB = BA.

In this case, the driving system is of the form (7.3.4) and the response

system of Sprott model L is given by ẏ1

ẏ2

ẏ3

 =

 −1 1 0

0 −1 0

0 0 −1


 y1

y2

y3



+

 k 0 0

0 k 0

0 0 k


 x1 + αx3

βx21

γ − x1 + x3


It gives,

ẏ1 = −y1 + y2 + k(x1 + αx3)

ẏ2 = −y2 + kβx21

ẏ3 = −y3 + k(γ − x1 + x3)

 (7.4.7)

where
−→
Y = (y1, y2, y3)

t.

The simulation results are shown in figure (7.1), figure (7.2) and

figure (7.3).

The state variables of the driving system and the response system
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Figure 7.1: Simulation 1: x1 vs x2 & y1 vs y2
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Figure 7.2: Simulation 1: x1 vs x3 & y1 vs y3
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are connected by the linear transformation as

y1 = kx1

y2 = kx2

y3 = kx3

 with k=2 (7.4.8)

Case-II : In this case, we consider,

B = A−1 =

 −1 −1 0

0 −1 0

0 0 −1

 ,

satisfying the condition AB = BA.

The response system of Sprott model L is given by ẏ1

ẏ2

ẏ3

 =

 −1 1 0

0 −1 0

0 0 −1


 y1

y2

y3



+

 −1 −1 0

0 −1 0

0 0 −1


 x1 + αx3

βx21

γ − x1 + x3


which gives,

ẏ1 = −y1 + y2 − x1 − αx3 − βx21
ẏ2 = −y2 − βx21
ẏ3 = −y3 − γ + x1 − x3

 (7.4.9)

where
−→
Y = (y1, y2, y3)

t.
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Figure 7.3: Simulation 1: x2 vs x3 & y2 vs y3
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Figure 7.4: Simulation 2: x1 vs x2 & y1 vs y2
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and the corresponding linear transformation is

y1 = −x1 − x2
y2 = −x2
y3 = −x3

 (7.4.10)

In this case, figure (7.4), figure (7.5) and figure (7.6) represent the

simulation results.

Case-III : Let us take

B = An = p

 1 −n 0

0 1 0

0 0 1

 ,

where p = (−1)n.
Clearly, AB = BA.

Hence, the response system of Sprott model L is evaluated as ẏ1

ẏ2

ẏ3

 =

 −1 1 0

0 −1 0

0 0 −1


 y1

y2

y3



+

 p −np 0

0 p 0

0 0 p


 x1 + αx3

βx21

γ − x1 + x3


It yields,

ẏ1 = −y1 + y2 + p(x1 + αx3 − nβx21)

ẏ2 = −y2 + pβx21

ẏ3 = −y3 + p(γ − x1 + x3)

 (7.4.11)
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Figure 7.5: Simulation 2: x1 vs x3 & y1 vs y3
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Figure 7.6: Simulation 2: x2 vs x3 & y2 vs y3
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where
−→
Y = (y1, y2, y3)

t.

and the corresponding linear transformation is

y1 = px1 − npx2
y2 = px2

y3 = px3

 (7.4.12)

where, p = (−1)n.
For n = 1, the simulation results are shown in figure (7.7), figure

(7.8) and figure (7.9).

For n = 2, figure (7.10), figure (7.11) and figure (7.12) represent

the corresponding simulation results.

In this method, one can easily find the functional relationship

between the states of the driving system and the response system.

Hence, the behavior of the response system can be obtained in ad-

vance by knowing the behavior of the driving system. Again, the

matrix associated with linear transformation being invertible, the

behavior of the driving system can be determined by knowing the be-

havior of the response system. This synchronization method is very

useful to apply in secure communication, electronic circuits, biolog-

ical systems, chemical system, information processing, engineering

etc. and it is also useful to study in non-linear dynamics.
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Figure 7.7: Simulation 3: x1 vs x2 & y1 vs y2
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Figure 7.8: Simulation 3: x1 vs x3 & y1 vs y3
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Figure 7.9: Simulation 3: x2 vs x3 & y2 vs y3
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Figure 7.10: Simulation 4: x1 vs x2 & y1 vs y2
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Figure 7.11: Simulation 4: x1 vs x3 & y1 vs y3
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Figure 7.12: Simulation 4: x2 vs x3 & y2 vs y3
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Chapter 8

Generalized Synchronization of

Nonlinear Oscillators via OPCL

Coupling

8.1 Introduction

Currently, there are many well-known control methods to stabilize

non-linear chaotic dynamical systems. Out of all those control meth-

ods ([1],[4],[39],[44],[60],[76] and [84]), open-plus-closed-loop control

method [72] is the most efficient method to make generalized syn-

chronization (GS) for a coupled dynamical systems. This proposed

method is insensitive with respect to system parameters which is one

of the advantages of this method. This is a combination of open-

loop system and closed-loop system. Open-loop means feed forward

and closed-loop means feed backward. This combination gives us

more flexibility to control and stabilize the dynamical systems. Us-

ing this method, the error term which is the difference between actual

output and required output, reduces automatically by adjusting the

system inputs. In this method, we are dealing with two systems
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known as master (drive) system and slave (response) system. Let

x = (x1, x2, x3, ..., xn)
T ∈ Rn be the state variable of the master sys-

tem and y = (y1, y2, y3, ..., yn)
T ∈ Rn be the state variable of the slave

system. There exists another state known as goal state. Our aim is

to reduce the difference between the goal system and slave system.

Goal system depends on the master system such that σ = Kx, where

σ = (σ1, σ2, σ3, ..., σn)
T ∈ Rn, the state variable of the goal system

andK is a transformation matrix of order n, chosen arbitrarily. Here,

in this communication, we will choose five different forms of the ma-

trix K. In section 3, we will study five different cases corresponding

to different forms of the matrix K. In the first case, the elements

of K are taken constants. In case-II, periodic functions are consid-

ered as the elements of K-matrix. The state variables of the master

system will be taken as the elements of K-matrix in case-III. For

the next case, the elements of K-matrix are taken as the state vari-

ables of the other dynamical system. Finally, in case-V, discussion is

made where one dynamical system drives another dynamical system

which is totally different in nature with the former dynamical system

along with the K-matrix whose elements are the state variables of

the other dynamical system. This last case is the most interesting

part of this chapter. Open-plus-closed-loop coupling method is very

useful in engineering science, chemical reactions, quantum physics,

lasers, electronic circuits, secure communication, microwave oscilla-

tors, electrical cloth drier etc.
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8.2 Description of OPCL Controller for GS

To describe this method, let us take a non-linear dynamical system

as the master system given below:

ẋ = ϕ(x) (8.2.1)

where x (∈ Rn) is the state variable of the master system and

ϕ : Rn → Rn.

Next, we consider the slave system given by the following dynamics

ẏ = ψ(y) + u (8.2.2)

where y (∈ Rn) is the state variable of the slave system and

ψ : Rn → Rn and u is the control input.

Let the generalized synchronization error e be defined as

e = y −Kx

or, y = σ + e, where σ = Kx.
(8.2.3)

Now, using Taylor’s expansion of a function, we have from equa-

tions (8.2.2) & (8.2.3)

ẏ = ψ(σ + e) + u

= ψ(σ) +
∂ψ(σ)

∂σ
e+ u,

neglecting second and higher orders of e to be very small.

Therefore,

ẏ = ψ(σ) + J(σ)e+ u, (8.2.4)

where J(σ) is the Jacobian of the flow ψ(σ).

Let us define ,

u = σ̇ − ψ(σ) + µe, where µ = V − J(σ) (8.2.5)
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and V is a matrix of order n.

Using (8.2.4) and (8.2.5), one gets easily

ė = V e (8.2.6)

which gives the error dynamics.

Now, the error dynamics (8.2.6) is globally asymptotically stable

if V -matrix is Hurwitz.

Hence, we can conclude that generalized synchronization between

the system (8.2.1) and (8.2.2) does not depend on K-matrix, it de-

pends on the V -matrix. In this communication, we are choosing the

elements of the V -matrix are similar to the elements of the Jacobian

matrix of the slave system except all those elements which carry the

state variables of the slave system. In this situation, we take con-

stant value wi(i = 1, 2, 3, ...) instead of the state variable of the slave

system for which V -matrix is Hurwitz, i.e., all the eigen values of V

have negative real parts. Accordingly the error dynamics (8.2.6) is

globally asymptotically stable. Finally, we claim that the generalized

synchronization of the master-slave system is made successfully.

8.3 Examples of GS using OPCL Controller

Case-I : According to previous section 8.2, we first consider a non-

linear chaotic Sprott system L as the master system given by

ẋ = ϕ(x), x ∈ R3 (8.3.7)

where

ϕ(x) =

 x2 + a1x3

b1x
2
1 − x2

c1 − x1

 , a1, b1 & c1 are the parameters.
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The slave system is taken as the mismatch Sprott system L

ẏ = ψ(y) + u, y ∈ R3 (8.3.8)

where

ψ(y) =

 y2 + a2y3

b2y
2
1 − y2

c2 − y1

 , a2, b2 & c2 are the parameters

and u = (u1, u2, u3)
t ∈ R3 is the controller.

Let

K =

 1 −0.8 −2.7
0 0.5 −2.3
0.5 0 0.7


Using σ = Kx, we have the goal dynamics as σ̇1

σ̇2

σ̇3

 =

 1 −0.8 −2.7
0 0.5 −2.3
0.5 0 0.7


 ẋ1

ẋ2

ẋ3


which yields,

σ̇1 = ẋ1 − 0.8ẋ2 − 2.7ẋ3

σ̇2 = 0.5ẋ2 − 2.3ẋ3

σ̇3 = 0.5ẋ1 + 0.7ẋ3

 (8.3.9)

The Jacobian matrix of the slave system is given by

J(y) =

 0 1 a2

2b2y1 −1 0

−1 0 0


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Then, V can be taken as,

V =

 0 1 a2

2b2w1 −1 0

−1 0 0

 ,

where w1 is chosen arbitrarily so that V is Hurwitz.

Hence, from equation (8.2.6), the error dynamics becomes

ė1 = e2 + a2e3

ė2 = 2b2w1e1 − e2
ė3 = −e1

 (8.3.10)

Then, one can easily obtain,

µ =

 0 0 0

2b2(w1 − σ1) 0 0

0 0 0

 ,

where w1 is chosen arbitrarily so that V is Hurwitz.

Now, using (8.2.5), the control input u is found as u1

u2

u3

 =

 σ̇1

σ̇2

σ̇3

−
 σ2 + a2σ3

b2σ
2
1 − σ2

c2 − σ1



+

 0 0 0

2b2(w1 − σ1) 0 0

0 0 0


 e1

e2

e3


which yields,

u1 = σ̇1 − σ2 − a2σ3
u2 = σ̇2 − b2σ21 + σ2 + 2b2(w1 − σ1)e1
u3 = σ̇3 − c2 + σ1

 (8.3.11)
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Case-II : Here, the master system and the slave system are taken

to be same as the system (8.3.7) & (8.3.8) respectively.

In this case, K is taken to be a 3×3 matrix with periodic function

as its elements given below :

K =

 0 −0.2cos(0.6t) 3.5

1 1 0

−sin(0.1t) −0.5 0


Thus, we have the goal dynamics as

σ̇ = Kẋ+ K̇x,

or,  σ̇1

σ̇2

σ̇3

 =

 0 −0.2cos(0.6t) 3.5

1 1 0

−sin(0.1t) −0.5 0


 ẋ1

ẋ2

ẋ3



+

 0 0.12sin(0.6t) 0

0 0 0

−0.1cos(0.1t) 0 0


 x1

x2

x3


which yields

σ̇1 = −0.2cos(0.6t)ẋ2 + 3.5ẋ3 + 0.12sin(0.6t)x2

σ̇2 = ẋ1 + ẋ2

σ̇3 = −sin(0.1t)ẋ1 − 0.5ẋ2 − 0.1cos(0.1t)x1

 (8.3.12)

The error dynamics is same as the previous case, because the

Jacobian matrix of the slave system remains the same.
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Figure 8.1: Case-I: master system (x) & slave system (y) with respect to time
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Hence, using (8.2.5), the control input u is given by

u1 = σ̇1 − σ2 − a2σ3
u2 = σ̇2 − b2σ21 + σ2 + 2b2(w1 − σ1)e1
u3 = σ̇3 − c2 + σ1

 (8.3.13)

Case- III : Let K be a 3×3 matrix containing the state variables

of the master system (8.3.7) as its elements and the slave system

remains unchanged,

where

K =

 1 0.03x1 0

−0.02x1 −0.1x3 0

0 0.01x2 0


Then, the system of goal dynamics is obtained as σ̇1

σ̇2

σ̇3

 =

 1 0.03x1 0

−0.02x1 −0.1x3 0

0 0.01x2 0


 ẋ1

ẋ2

ẋ3



+

 0 0.03ẋ1 0

−0.02ẋ1 −0.1ẋ3 0

0 0.01ẋ2 0


 x1

x2

x3


which yields

σ̇1 = ẋ1 + 0.03(ẋ1x2 + x1ẋ2)

σ̇2 = −0.04x1ẋ1 − 0.1(ẋ3x2 + x3ẋ2)

σ̇3 = 0.02ẋ2x2

 (8.3.14)

175



0 20 40 60 80 100
−50

0

50

x
1

y
1

0 20 40 60 80 100
0

20

40 x
2

y
2

0 20 40 60 80 100
−40

−20

0

20
x

3

y
3

→ t
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Here, the error dynamics remains similar as the previous case and

the controller u as follows :

u1 = σ̇1 − σ2 − a2σ3
u2 = σ̇2 − b2σ21 + σ2 + 2b2(w1 − σ1)e1
u3 = σ̇3 − c2 + σ1

 (8.3.15)

Case- IV : In this case, the elements of K-matrix are chosen so that

it contains the state variables of Shimizu-Morioka system whereas the

master-slave system are taken to be the mismatched coupled Sprott

system L given by the system (8.3.7) & (8.3.8).

The Shimizu-Morioka system [29] is given by

ż1 = δz2

ż2 = δ(z1 − λz2 − z1z3)

ż3 = δ(−ρz3 + z21),

 (8.3.16)

where λ & ρ are the positive parameters and δ = 0.02 for which the

original system of equation is slightly being changed without loss of

generality.

Let

K =

 −3.5z2 0 0

0 0.1z1 3

−1 0 2.7z3


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Then, the goal dynamics is found as σ̇1

σ̇2

σ̇3

 =

 −3.5z2 0 0

0 0.1z1 3

−1 0 2.7z3


 ẋ1

ẋ2

ẋ3



+

 −3.5ż2 0 0

0 0.1ż1 0

0 0 2.7ż3


 x1

x2

x3


which yields

σ̇1 = −3.5(ẋ1z2 + x1ż2)

σ̇2 = 3ẋ3 + 0.1(ż1x2 + z1ẋ2)

σ̇3 = −ẋ1 + 2.7(ẋ3z3 + x3ż3)

 (8.3.17)

Using (8.3.17) and (8.2.5), we get the controller u as,

u1 = σ̇1 − σ2 − a2σ3
u2 = σ̇2 − b2σ21 + σ2 + 2b2(w1 − σ1)e1
u3 = σ̇3 − c2 + σ1

 (8.3.18)

where e = (e1, e2, e3)
t ∈ R3, the state variables of the error system

(8.3.10).

Case- V : Here, Rikitake system drives Sprott L system (8.3.8) with

transformation matrix K consisting state variables of Rössler system.

The non-linear Rikitake system [31] considered as the master sys-

tem given by

ṙ1 = αr1 + r2r3

ṙ2 = −αr2 + (r3 − β)r1
ṙ3 = 1− r1r2

 , (8.3.19)
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where α, β are the parameters.

To construct the K-matrix, we consider the Rössler dynamical

system [71] as

ṡ1 = −s2 − s3
ṡ2 = s1 + ls2

ṡ3 = m+ s3(s1 − p)

 , (8.3.20)

where l, m, p are the parameters.

Let us take,

K =

 0.75s1 0.45s3 −0.01s1
0 −0.35s1 −0.1s1

−0.01s3 0 0.02s2


In this case, the goal variable can be selected as

σ = Kr, r = (r1, r2, r3)
t ∈ R3,

the state variable of the master system (8.3.19).

Then, the goal dynamics is given by σ̇1

σ̇2

σ̇3

 =

 0.75s1 0.45s3 −0.01s1
0 −0.35s1 −0.1s1

−0.01s3 0 0.02s2


 ṙ1

ṙ2

ṙ3



+

 0.75ṡ1 0.45ṡ3 −0.01ṡ1
0 −0.35ṡ1 −0.1ṡ1

−0.01ṡ3 0 0.02ṡ2


 r1

r2

r3


which yields

σ̇1 = 0.75(s1ṙ1 + ṡ1r1) + 0.45(s3ṙ2 + ṡ3r2)

− 0.01(s1ṙ3 + ṡ1r3)

σ̇2 = −0.35(s1ṙ2 + ṡ1r2)− 0.1(s1ṙ3 + ṡ1r3)

σ̇3 = −0.01(s3ṙ1 + ṡ3r1) + 0.02(s2ṙ3 + ṡ2r3)


(8.3.21)

184



Hence, u, the control input of the slave system (Sprott L system) is

calculated as

u1 = σ̇1 − σ2 − a2σ3
u2 = σ̇2 − b2σ21 + σ2 + 2b2(w1 − σ1)e1
u3 = σ̇3 − c2 + σ1

 (8.3.22)

where e = (e1, e2, e3)
t ∈ R3, the state variables of the error system

which remains same with the previous four cases because V -matrix

remains unchanged.

8.4 Numerical Results & Discussions

Here, we will discuss the previous section numerically with the help

of matlab software.

Sprott found the chaotic nature for the master system (8.3.7) when

a1 = 3.9, b1 = 0.9, c1 = 1.

To make non-identical coupled Sprott L system for the slave sys-

tem (8.3.8), we take a2 = 4.4, b2 = 1.6, c2 = 1.7.

V -matrix reduces to Hurwitz if we take w1 = −4.5.
In Shimizu-Morioka system (8.3.16), we consider λ = 0.799 & ρ =

0.54 for showing its chaotic nature.

In the non-linear Rikitake system (8.3.19), there exists two pa-

rameters α & β. Let α = 2, β = 5.

We choose l = m = 0.2 & p = 5.7 for the Rössler system given

by equation(8.3.20).

Let us consider, x(0) = (1, 0, 1), y(0) = (1, 0, 1) and σ(0) =

(1, 0, 1) for the cases I-IV.
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But, for the case-V, the initial condition for the drive system

(Rikitake system) and response system (Sprott system) be chosen

as (0,0.1,0) and (0,1,0) respectively. In this case, at t = 0, we have

also considered, s1(0) = 0.1, s2(0) = 0.1, s3(0) = 0.1, σ1(0) =

0, σ2(0) = 1 and σ3(0) = 0.

Figure (8.1), figure (8.3), figure (8.5), figure (8.7) and figure (8.9)

represents the graph of the master and the slave system with respect

to time respectively.

In figure (8.2)(a), figure (8.4)(a), figure (8.6)(a), figure (8.8)(a)

and figure (8.10)(a), we have plotted xi vs yi, i = 1, 2, 3 for all the

cases I through V.

From the relation (8.2.3), we can claim that the error term goes

to zero after some finite time by reducing the difference between goal

variables and slave variables. To establish our claim, we have drawn

figure (8.2)(b), figure (8.4)(b), figure (8.6)(b), figure (8.8)(b) and fig-

ure (8.10)(b).

8.5 Conclusion

In this chapter, we have successfully established the generalized syn-

chronization between the master (drive) system & the slave (re-

sponse) system via OPCL method. This method is mostly inde-

pendent of the system parameters. This method has so many appli-

cations in practical life, for example, microwave oscillators, electrical

cloth drier etc. In engineering sciences, it is also very useful.
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Chapter 9

Study on Dynamical Systems

with Time-Delay

9.1 Introduction

Interest on chaos based systems is increasing, as the time goes on.

The popularity of chaotic system is mainly for its behaviour. It

is very much sensitive on initial conditions and system parameters.

Lorenz(1963)[45] gives us the opportunity to discover the behaviour

of chaos. At present, there exists incalculable number of papers

on chaotic dynamical systems. In 1994, J.C.Sprott[52] discovered

a set of nineteen dynamical systems, known as Sprott model A to

S. Out of those dynamical systems, we consider the Sprott model L

which has one non-linear term and three system parameters. Stabil-

ity of chaos is very important part of chaotic dynamical system. In

this chapter, we will make the stability analysis by applying small

perturbation near critical points to the time-delayed Sprott model

L. In control theory, stability analysis of a dynamical system with

multiple time delay is an interesting area because the system be-
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comes unstable due to delays. There exists so many control meth-

ods, namely, sliding mode control(SMC)[53, 84], open-plus-closed

loop(OPCL) control[72], backstepping control method [92], active

control[4], adaptive control[26], hybrid and tracking control[90], time-

delay method[22] etc.

Next, our aim is to investigate the drive-response synchronization

of time-delayed Sprott model L. In the literature, many methods

have been developed for the drive-response synchronization of a cou-

pled chaotic non-linear dynamical systems, for example, projective

synchronization [23], phase synchronization[75], identical or complete

synchronization [65], anti-synchronization[14], lag synchronization[94],

anticipatory synchronization [86], generalised synchronization[38] etc.

Here, we will study five distinct cases by choosing five different

types of matrix B, where B is the variable matrix of order n, as-

sociated with the response system of the time-delayed Sprott sys-

tem L. To get identical synchronization in case-I, we will consider

the matrix B as unit matrix. In second case, the matrix B can be

chosen as scalar matrix with diagonal elements (-1) to obtain anti-

synchronization between the coupled Sprott system. In the next case,

we will take the matrix B as a constant matrix. Periodic functions

are chosen as the elements of the matrix B in case-IV. For the last

case, the elements of the matrix B are taken as the state variables

of the drive system. The time-delayed chaos synchronization of a

non-linear dynamical system is useful in secure communication [37],

electronic experiments[41], chemical and biological system[67], engi-

neering sciences[72], mathematical system, laser physics[76], ecology,

economics and cognitive sciences[47] etc.
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In the next section, we will study the stability of a nonlinear

chaotic dynamical system with multiple delay parameters. In sec-

tion 9.3, we will make a delay synchronization scheme and for this

purpose, we have chosen Sprott system in section 9.4. Using Runge-

Kutta method and matlab software, numerical simulation is done in

section 9.5.

9.2 Stability Analysis

To discuss the stability of a non-linear time-delayed dynamical sys-

tem, we consider a chaotic dynamical system with one non-linear

term known as Sprott system L[52], written as

ẋ = y + az + d1x(t− τ1) + d2x(t− τ2)

ẏ = bx2 − y

ż = c− x

 (9.2.1)

where a, b, c are regular parameters, τ1 and τ2 are delay parameters

and d1, d2 are the geometric factors.

In case of critical points,

ẋ = 0, ẏ = 0 and ż = 0

It gives the critical point of the system (9.2.1) as

(x0, y0, z0) ≡
(
c, bc2,−c(d1 + d2 + bc)

a

)
To perform a small perturbation at the critical point of the system

(9.2.1), let us take,

x = x0 + x′, y = y0 + y′, z = z0 + z′
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Then,

ẋ′ = y′ + az′ + d1x
′(t− τ1) + d2x

′(t− τ2)

ẏ′ = b(x0 + x′)2 − (y0 + y′)

= (bx20 − y0) + 2bx0x
′ − y′ + bx′2

= 2bx0x
′ − y′, since bx20 − y0 = 0.

(neglecting second order term as x′ is so small)

ż′ = (c− x0)− x′

= −x′, since c− x0 = 0.

Hence, the time-delayed system (9.2.1) reduces to

ẋ′ = y′ + az′ + d1x
′(t− τ1) + d2x

′(t− τ2)

ẏ′ = 2bx0x
′ − y′

ż′ = −x′

 (9.2.2)

Let x′ = Aeµt, y′ = Beµt, z′ = Ceµt be the solution of (9.2.2).

Then, from the system of equation(9.2.2), one may easily find that

(µ− d1e−µτ1 − d2e−µτ2)A−B − aC = 0

and − 2bcA+ (µ+ 1)B = 0

and A+ µC = 0

 (9.2.3)

Eliminating A, B, C from (9.2.3), one gets,∣∣∣∣∣∣∣
µ− d1e−µτ1 − d2e−µτ2 −1 −a

−2bc (µ+ 1) 0

1 0 µ

∣∣∣∣∣∣∣ = 0

which yields,

µ3 + (1− d1e−µτ1 − d2e−µτ2)µ2

+ (a− 2bc− d1e−µτ1 − d2e−µτ2)µ+ a = 0
(9.2.4)
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Now, by applying Routh-Hurwitz criterion [59], the above char-

acteristic equation (9.2.4) in µ gives the stability criteria for the dy-

namical system in absence of delay, i.e., τ1 = 0 and τ2 = 0 if and only

if,

1− d1 − d2 > 0, a− 2bc− d1 − d2 > 0, a > 0

and (1− d1 − d2)(a− 2bc− d1 − d2) > a
(9.2.5)

From the first two inequality, we have,

(d1 + d2) < min{1, (a− 2bc)}

and from the last inequality of (9.2.5), we have,

(d1 + d2)
2 + (2bc− a− 1)(d1 + d2)− 2bc > 0

But, in presence of delay parameters, let us take, µ = α+ iβ, β > 0.

Then, the equation (9.2.4) becomes,

(α+ iβ)3+(1− d1e−(α+iβ)τ1 − d2e−(α+iβ)τ2)(α + iβ)2

+ (a− 2bc− d1e−(α+iβ)τ1 − d2e−(α+iβ)τ2)(α+ iβ) + a = 0.

or,

{(α3 − 3αβ2) + i(3α2β − β3)}

+ {1− d1e−ατ1(cos(βτ1)− isin(βτ1))

− d2e−ατ2(cos(βτ2)− isin(βτ2))}{(α2 − β2) + i2αβ}

+ {a− 2bc− d1e−ατ1(cos(βτ1)− isin(βτ1))

− d2e−ατ2(cos(βτ2)− isin(βτ2))}(α + iβ) + a = 0.
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or,

{(α3 − 3αβ2) + i(3α2β − β3)}

+ {(1− d1e−ατ1cos(βτ1)− d2e−ατ2cos(βτ2))

+ i(d1e
−ατ1sin(βτ1) + d2e

−ατ2sin(βτ2))}{(α2 − β2) + i2αβ}

+ {(a− 2bc− d1e−ατ1cos(βτ1)− d2e−ατ2cos(βτ2))

+ i(d1e
−ατ1sin(βτ1) + d2e

−ατ2sin(βτ2))}(α+ iβ) + a = 0.

or,

{(α3 − 3αβ2) + i(3α2β − β3)}

+ {(1− d1e−ατ1cos(βτ1)− d2e−ατ2cos(βτ2))(α2 − β2)

− 2αβ(d1e
−ατ1sin(βτ1) + d2e

−ατ2sin(βτ2))}

+ i{2αβ(1− d1e−ατ1cos(βτ1)− d2e−ατ2cos(βτ2))

+ (α2 − β2)(d1e
−ατ1sin(βτ1) + d2e

−ατ2sin(βτ2))}

+ {α(a− 2bc− d1e−ατ1cos(βτ1)− d2e−ατ2cos(βτ2))

− β(d1e−ατ1sin(βτ1) + d2e
−ατ2sin(βτ2))}

+ i{β(a− 2bc− d1e−ατ1cos(βτ1)− d2e−ατ2cos(βτ2))

+ α(d1e
−ατ1sin(βτ1) + d2e

−ατ2sin(βτ2))}+ a = 0.

Now, separating the real and imaginary parts of the above expres-

sion, one may find,

(α3 − 3αβ2)

+ (α2 − β2){1− d1e−ατ1cos(βτ1)− d2e−ατ2cos(βτ2)}

− 2αβ{d1e−ατ1sin(βτ1) + d2e
−ατ2sin(βτ2)}

+ α{a− 2bc− d1e−ατ1cos(βτ1)− d2e−ατ2cos(βτ2)}

− β{d1e−ατ1sin(βτ1) + d2e
−ατ2sin(βτ2)}+ a = 0

(9.2.6)
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and,

(3α2β − β3)

+ 2αβ{1− d1e−ατ1cos(βτ1)− d2e−ατ2cos(βτ2)}

+ (α2 − β2)(d1e
−ατ1sin(βτ1) + d2e

−ατ2sin(βτ2))

+ β{a− 2bc− d1e−ατ1cos(βτ1)− d2e−ατ2cos(βτ2)}

+ α{d1e−ατ1sin(βτ1) + d2e
−ατ2sin(βτ2)} = 0

(9.2.7)

Let us choose, τ1 = τ2 = τ , then the expressions (9.2.6) and (9.2.7)

reduce to

(α3 − 3αβ2) + (α2 − β2){1− (d1 + d2)e
−ατcos(βτ)}

− 2αβ(d1 + d2)e
−ατsin(βτ)

+ α{a− 2bc− (d1 + d2)e
−ατcos(βτ)}

− β(d1 + d2)e
−ατsin(βτ) + a = 0

and,

(3α2β − β3) + 2αβ{1− (d1 + d2)e
−ατcos(βτ)}

+ (α2 − β2)(d1 + d2)e
−ατsin(βτ)

+ β{a− 2bc− (d1 + d2)e
−ατcos(βτ)}

+ α(d1 + d2)e
−ατsin(βτ) = 0

or,

(d1+d2)(β
2 − α2 − α)e−ατcos(βτ)

− (d1 + d2)(2α + 1)βe−ατsin(βτ)

+ {α3 + α2 + (a− 2bc− 3β2)α + (a− β2)} = 0

(9.2.8)
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and
(d1+d2)(α

2 + α− β2)e−ατsin(βτ)

− (d1 + d2)(2α + 1)βe−ατcos(βτ)

+ {3α2β + 2αβ + (a− 2bc− β2)β} = 0

(9.2.9)

If we set, α = 0, we have,

(d1 + d2)β
2cos(βτ)− (d1 + d2)βsin(βτ) + (a− β2) = 0

and

−(d1 + d2)βcos(βτ)− (d1 + d2)β
2sin(βτ) + (a− 2bc− β2)β = 0

or,

u1cos(βτ) + u2sin(βτ) + v1 = 0

and u2cos(βτ)− u1sin(βτ) + v2 = 0

}
(9.2.10)

where

u1 = (d1 + d2)β
2, u2 = −(d1 + d2)β

v1 = a− β2, v2 = (a− 2bc− β2)β

Eliminating τ from (9.2.10), one gets,

u21 + u22 = v21 + v22

This implies that,

(d1 + d2)
2β2(β2 + 1) = (a− β2)2 + (a− 2bc− β2)2β2 (9.2.11)

Let β2 = σ. Then, we have,

(d1 + d2)
2σ(σ + 1) = (a− σ)2 + (a− 2bc− σ)2σ

or, σ3 + h1σ
2 + h2σ + h3 = 0 (9.2.12)
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where, h1 = 1− 2(a− 2bc)− (d1 + d2)
2,

h2 = (a− 2bc)2 − 2a− (d1 + d2)
2 and h3 = a2.

Let us define

f(σ) = σ3 + h1σ
2 + h2σ + h3 (9.2.13)

The existence of a positive root of f(σ) = 0 amounts to the ex-

istence of a β as discussed above. Hence, the existence of a positive

root is equivalent to bifurcation in the time delay system.

Now,

df

dσ
= 3σ2 + 2h1σ + h2

= 3

[
σ2 + 2h1.

σ

3
+
h2
3

]
= 3

[(
σ +

h1
3

)2

+
h2
3
− h21

9

]

= 3

[(
σ +

h1
3

)2

+
3h2 − h21

9

]
Case I : 3h2 − h21 ≥ 0.

Then, df
dσ ≥ 0. Therefore, f(σ) is non-decreasing

and f(0) = h3 = a2 > 0.

Hence, there is no possibility of occurrence of a positive root of the

equation (9.2.12).

Case II : 3h2 − h21 < 0.

Then,

df

dσ
= 3

[(
σ +

h1
3

)2

+
3h2 − h21

9

]
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which gives

d2f

dσ2
= 6

(
σ +

h1
3

)
Therefore, d2f

dσ2 < 0, if and only if, σ + h1

3 < 0, that is, if and only if,

σ < 1
3

{
(d1 + d2)

2 + 2(a− 2bc)− 1
}
=M say.

In this case, df
dσ is decreasing and[
df

dσ

]
σ=0

= 3

[(
h1
3

)2

+
3h2 − h21

9

]
= h2

Then, [
df

dσ

]
σ=0

< 0 if (a− 2bc)2 − 2a− (d1 + d2)
2 < 0.

In this case, df
dσ < 0 for all σ ∈ (0,M) provided M > 0.

Therefore, we have the following result :

If d1 and d2 are chosen such thatM =
1

3

{
(d1 + d2)

2 + 2(a− 2bc)− 1
}
>

0 and (a − 2bc)2 − 2a − (d1 + d2)
2 < 0, then f(σ) is decreasing in

(0,M).

As f(0) > 0, there may be a positive root of f(σ) = 0.

In addition, if there exists η > 0 such that

η3 + h1η
2 + h2η + h3 < 0,

then f has a positive root in (0, η).

The parameter values for Sprott system L to be chaotic are a =

3.9, b = 0.9 and c = 1.0.

Choosing d1 = 0.2 and d2 = 0.3, we can check that the required

198



conditions for f to be decreasing on (0,M) are satisfied.

In addition, simple computations show that for any η ∈ [2.60, 2.88],

η3 + h1η
2 + h2η + h3 < 0.

Hence, there indeed exists a positive root of f(σ) = 0 in (0, η) where

η ∈ [2.60, 2.88].

As we have shown the existence of positive roots for proper choice

of d1 and d2, let us consider,

βj =
√
σj, j = 1, 2, 3. (9.2.14)

Hence, from (9.2.10), one may easily obtain,

cos(βτ) =
−2bc

(d1 + d2)(β2 + 1)

It yields,

τ
(m)
j =

1
√
σj

[
cos−1

{
−2bc

(d1 + d2)(σj + 1)

}
+ 2mπ

]
(9.2.15)

where m = 0, 1, 2, .... and j = 1, 2, 3.

Define,

τ0 = τ
(0)
j0

= min
j∈{1,2,3}

{τ (0)j }, β0 = βj0 (9.2.16)

Thus, when τ = τ0, the characteristic values of the linearized time

delay system become completely imaginary. The stability behaviour

of the critical point of the system (9.2.1) changes as τ varies across τ0.

At τ = τ0, a limit cycle around the critical point is generated and the

critical point loses stability. The Sprott system L thus undergoes a

Hopf bifurcation. There exists countably infinite values of τ for which

such bifurcations occur and the sequences τ
(m)
j enumerates all such

values. The smallest one of them, τ0, has been chosen for discussion

above.
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9.3 Delay Synchronization Scheme

Any non-linear dynamical system can be written as

ẋ = Ax+ ϕ(x(t), x(t− τ)), (9.3.17)

where x ∈ Rn, A ∈ Rn×n, ϕ : Rn → Rn is non-linear vector function.

We now consider a new dynamical system which is coupled with

the system (9.3.17) as given below:

ẏ = Ay +B(x(t), x(t− τ), t).ϕ(x(t), x(t− τ)) + u, (9.3.18)

where B is a variable matrix of order n and u is the controller which

controls the motion of the system (9.3.18).

Let us assume the error term e defined as

e = y −Bx

= y − V,
(9.3.19)

where V = Bx.

Therefore, the error dynamics can be written as

ė = ẏ − Ḃx−Bẋ

= Ay +Bϕ+ u− Ḃx−B(Ax+ ϕ)

= Ay −BAx+ u− Ḃx

= A(y −Bx) + u− Ḃx+ (AB −BA)x

Therefore,

ė = Ae+ u− Ḃx+ (AB −BA)x (9.3.20)

Let the controller be chosen as,

u = Ḃx− (AB −BA)x− pe (9.3.21)
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where p is a scalar which generates the coupling strength.

Then, the error dynamics (9.3.20) becomes

ė = He, where H = A− pI (9.3.22)

where I is the unit matrix of order n.

Let us take, lyapunov function V (e) = 1
2e

Te, where V(e) is a pos-

itive definite function.

Now, V̇ (e) < 0 if H is Hurwitz.

Hence, ∥e(t)∥ → 0 as t→∞.
Thus, the delay synchronization is achieved globally and asymp-

totically.

9.4 Application of Delay Synchronization

Let us consider the Sprott model L [50] with time delay as the driver

system, given by,

ẋ1 = x2 + ax3 + d1x1(t− τ1) + d2x1(t− τ2)

ẋ2 = bx21 − x2
ẋ3 = c− x1

 (9.4.23)

Now, the system (9.4.23) can be written as in the form (9.3.17) as

ẋ = Ax+ ϕ(x, xτ), xτ = x(t− τ)

where x = (x1, x2, x3)
T , and A =

 0 1 a

0 −1 0

−1 0 0


ϕ =

 d1x1(t− τ1) + d2x1(t− τ2)
bx21

c


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Then, the response system can be written as

ẏ = Ay +Bϕ+ u

= Ay +Bϕ+ Ḃx− (AB −BA)x− pe

= Ay +Bϕ+ Ḃx− (AB −BA)x− p(y −Bx)

= (A− pI)y +Bϕ+ Ḃx+ pBx− (AB −BA)x

which yields,

ẏ = Hy +B[ϕ+ px] + Ḃx− (AB −BA)x (9.4.24)

where H = A− pI.
Using (9.3.22), the error dynamics is given by,

ė1 = −pe1 + e2 + ae3

ė2 = −(1 + p)e2

ė3 = −e1 − pe3

 (9.4.25)

9.5 Numerical Discussions and Results

Here, we have considered the values of the system parameters as

a = 3.9, b = 0.9, c = 1.0 with delay parameters as τ1 = 1.7 and

τ2 = 1.0.

Let us take x(0) = (0.01, 0, 0.01) and y(0) = (1, 0, 1) as the

initial conditions for the coupled system(9.4.23) and (9.4.24). We

also consider the initial condition for the synchronization error as

e(0) = (1, 0,−1). Let us also assume d1 = 0.01 and d2 = 0.03.

We have chosen p = 8.5, so that H is hurwitz.
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To establish our claim, we will discuss five different cases.

Case I : B is a unit matrix.

Let B =

 1 0 0

0 1 0

0 0 1


Therefore, AB = BA

Now, one may easily obtain that

H = A− pI =

 −p 1 a

0 −(1 + p) 0

−1 0 −p


and ϕ+ px =

 d1x1(t− τ1) + d2x1(t− τ2) + px1

bx21 + px2

c+ px3


Then, the response system (9.4.24) is given by,

ẏ1 = −py1 + y2 + ay3 + d1x1(t− τ1) + d2x1(t− τ2) + px1

ẏ2 = −(1 + p)y2 + bx21 + px2

ẏ3 = −y1 − py3 + c+ px3

(9.5.26)

From figure (9.1), figure (9.2) and figure (9.3), we can say that the

drive system (9.4.23) and the response system (9.5.26) are synchro-

nized identically with time delay.

Case II : B is a scalar matrix.

If we consider B =

 −1 0 0

0 −1 0

0 0 −1

 then, AB = BA.
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Figure 9.1: Case-I: x1 and y1 with respect to time
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Figure 9.2: Case-I: x2 and y2 with respect to time
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Figure 9.3: Case-I: x3 and y3 with respect to time
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Figure 9.4: Case-II: x1 and y1 with respect to time
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Figure 9.5: Case-II: x2 and y2 with respect to time
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Figure 9.6: Case-II: x3 and y3 with respect to time
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Since the matrices H and (ϕ+px) remain unchanged, the response

system (9.4.24) becomes,

ẏ1 = −py1 + y2 + ay3 − d1x1(t− τ1)− d2x1(t− τ2)− px1
ẏ2 = −(1 + p)y2 − bx21 − px2
ẏ3 = −y1 − py3 − c− px3

(9.5.27)

The anti-synchronization of the time-delayed coupled Sprott L

systems (9.4.23) and (9.5.27) is successfully achieved by figure (9.4)

figure (9.5) and figure (9.6).

Case III : B is a constant matrix of order 3.

One may take, B =

 0.2 0 −1.3
0 2.7 1

0 0.5 0


Then,

AB =

 0 (2.7 + 0.5a) 1

0 −2.7 −1
−0.2 0 1.3



and BA =

 1.3 0.2 0.2a

−1 −2.7 0

0 −0.5 0



Therefore, AB −BA =

 −1.3 (2.5 + 0.5a) (1− 0.2a)

1 0 −1
−0.2 0.5 1.3


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Figure 9.7: Case-III: x1 and y1 with respect to time
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Figure 9.8: Case-III: x2 and y2 with respect to time
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Figure 9.9: Case-III: x3 and y3 with respect to time

Then, the response system (9.4.24) is given by,

ẏ1 = −py1 + y2 + ay3 − 1.3(c+ px3) + 1.3x1

+ 0.2(d1x1(t− τ1) + d2x1(t− τ2) + px1)

− (2.5 + 0.5a)x2 − (1− 0.2a)x3

ẏ2 = −(1 + p)y2 + 2.7(bx21 + px2) + (c+ px3)− x1 + x3

ẏ3 = −y1 − py3 + 0.5(bx21 + px2) + 0.2x1 − 0.5x2 − 1.3x3

(9.5.28)

Figure (9.7), figure (9.8) and figure (9.9) shows the time history of

the state variable xi of the drive system (9.4.23) and the state vari-

able yi of the response system (9.5.28) respectively, where i = 1, 2, 3.
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Case IV : B is chosen to be a 3×3 matrix with periodic function

as its elements given below:

B =

 2.3 0 −0.1sin(0.1t)
−1 1 0

0 0.2cos(0.9t) 0



Therefore, Ḃ =

 0 0 −0.01cos(0.1t)
0 0 0

0 −0.18sin(0.9t) 0


In this case,

AB =

 −1 1 + 0.2cos(0.9t)a 0

1 −1 0

−2.3 0 0.1sin(0.1t)



BA =

 0.1sin(0.1t) 2.3 2.3a

0 −2 −a
0 −0.2cos(0.9t) 0


Then, AB −BA

=

 −1− 0.1sin(0.1t) −1.3 + 0.2cos(0.9t)a −2.3a
1 1 a

−2.3 0.2cos(0.9t) 0.1sin(0.1t)



210



Here, the response system (9.4.24) becomes,

ẏ1 = −py1 + y2 + ay3 − 0.1sin(0.1t)(c+ px3)

+ 2.3(d1x1(t− τ1) + d2x1(t− τ2) + px1)

− 0.01cos(0.1t)x3 + (1 + 0.1sin(0.1t))x1

− (−1.3 + 0.2cos(0.9t)a)x2 + 2.3ax3

ẏ2 = −(1 + p)y2 + (bx21 + px2)− x1 − x2 − ax3
− (d1x1(t− τ1) + d2x1(t− τ2) + px1)

ẏ3 = −y1 − py3 + 0.2cos(0.9t)(bx21 + px2)

− 0.18sin(0.9t)x2 + 2.3x1

− 0.2cos(0.9t)x2 − 0.1sin(0.1t)x3

(9.5.29)

The coupled synchronization is successfully made for this case shown

by the figure (9.10), figure (9.11) and figure (9.12).

Case V : B contains the state variables of the Sprott L system

(9.4.23).

Therefore, B can be taken as

B =

 0 −1 0.01x2

1 −0.2x1 −x3
x1 0 0


One can easily find,

Ḃ =

 0 0 0.01ẋ2

0 −0.2ẋ1 −ẋ3
ẋ1 0 0


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Figure 9.10: Case-IV: x1 and y1 with respect to time
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Figure 9.11: Case-IV: x2 and y2 with respect to time
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Now,

AB =

 1 + ax1 −0.2x1 −x3
−1 0.2x1 x3

0 1 −0.01x2



BA =

 −0.01x2 1 0

x3 1 + 0.2x1 a

0 x1 ax1


Then, AB −BA

=

 1 + ax1 + 0.01x2 −(0.2x1 + 1) −x3
−(1 + x3) −1 x3 − a

0 1− x1 −(0.01x2 + ax1)


Therefore, the response system (9.4.24) reduces to,

ẏ1 = −py1 + y2 + ay3 − (bx21 + px2) + 0.01x2(c+ px3)

+ 0.01ẋ2x3 − (1 + ax1 + 0.01x2)x1

+ (0.2x1 + 1)x2 + x23

ẏ2 = −(1 + p)y2 + (d1x1(t− τ1) + d2x1(t− τ2) + px1)

− 0.2x1(bx
2
1 + px2)− x3(c+ px3)− 0.2ẋ1x2

− ẋ3x3 + (1 + x3)x1 + x2 − (x3 − a)x3
ẏ3 = −y1 − py3 + x1(d1x1(t− τ1) + d2x1(t− τ2) + px1)

+ ẋ1x1 − (1− x1)x2 + (0.01x2 + ax1)x3

(9.5.30)

The drive-response coupled synchronization is again achieved suc-

cessfully representing by figure (9.13), figure (9.14) and figure (9.15)

as we have shown in previous cases.

It is observed that the error dynamics (9.3.22) remain same for
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Figure 9.12: Case-IV: x3 and y3 with respect to time
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Figure 9.13: Case-V: x1 and y1 with respect to time
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Figure 9.14: Case-V: x2 and y2 with respect to time
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Figure 9.15: Case-V: x3 and y3 with respect to time
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Figure 9.16: Time evolution of the synchronization error e

all the above cases. Figure (9.16) illustrates the time history of the

synchronization error.

9.6 Conclusion

Here, we have found the stability condition at the critical points of

time delay system in absence of delay using Routh-Hurwitz criterion

in section 9.2. In presence of delay, we investigate how the stable

critical points of the original system (without delay) undergo Hopf
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bifurcation and lose their stability. Interestingly, this transformation

of stability behaviour of the critical points with variation of time de-

lay is a cyclic process and it keeps repeating itself. Using Lyapunov

stability theory, in section 9.3, we have established the generalized

delay synchronization scheme. In this context, OPCL control tech-

nique is suitably modified to construct the controller which brings

about synchronization. In section 9.4, we have studied lag gener-

alized synchronization for the coupled Sprott system with multiple

time delay. Lag complete and lag anti-synchronization arises as spe-

cial cases in our study in section 9.5. Another point of importance is

the use of system state variables in the transformation matrix. The

synchronization is global and asymptotically stable. Five different

cases are analyzed. To test the analytical findings, numerical simula-

tion is performed. This method is suitable for electronic experiments,

laser physics, neural systems, engineering sciences and so on.
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Chapter 10

Summary

In chapter 1, we have discussed some important developments

in dynamical system over the last few decades which share deep rela-

tions with the problems undertaken in this thesis. We have divided

this chapter into five parts. In section 1.1, we have presented a short

literature survey on control of chaos and synchronization. Some ba-

sic concepts on non-linear dynamics is discussed in section 1.2. The

next section 1.3 covers the discussion on the phenomenon of chaos in

the context of non-linear dynamical system. Section 1.4 contains the

discussion on the theoretical tools necessary for studying control and

synchronization. It also discusses various types of synchronization in

the context of chaotic systems. In the last section of this chapter, we

have described the structure of the thesis.

In chapter 2, we have analyzed the control of chaotic dynamical

systems by locally stabilizing the unstable critical points of the said

systems. For this purpose, two chaotic models have been chosen,

namely the Sprott model B and the Sprott model L. We have first

verified the dissipativity of the systems. The controllability of the
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systems under small perturbations is proved by utilising the Kalman

rank condition. Then, in the neighbourhood of the critical points

of the systems, we have introduced small perturbations. Applying

Routh-Hurwitz criterion, the conditions for stability of the systems

under small perturbations is determined. Next, linear feedback con-

trol law is used for chaos control. Numerical simulations are pre-

sented to depict the efficiency of the method.

In chapter 3, we have investigated the sophisticated state space

exact linearization (SSEL) control method which designs non-linear

feedback and diffeomorphic coordinate transformation to obtain local

exact linearization. The linearized system is controllable and hence

a suitable controller is designed that control the original chaotic sys-

tem. This nonlinear feedback control technique is then used to sta-

bilize the chaotic Sprott model B. Using numerical simulations, we

have shown the how the control goal can be changed with time which

drives the system to any chosen point (provided the chosen point lies

within the reachable set).

In chapter 4, we have studied a non-smooth minimal model for

glucose and insulin kinetics system. After producing a smooth ap-

proximation of the system, we have checked the dissipativity and

existence of the critical points. Here, we have studied the behaviour

of the blood glucose level in human body. We have designed a linear

feedback based control to regulate the blood glucose level automati-

cally when the physical system fails. Numerical simulation have done

to show the stability of the control system by choosing different val-
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ues for the feedback gain parameter. A critical control parameter

value kc is determined in terms of the system parameters. Extensive

numerical simulation is performed with different sets of parameter

values. Assuming different values for the feedback gain parameter,

ranges of physiological parameter α are determined where the feed-

back gain is sufficient to stabilize the system.

In chapter 5, complete synchronization has been achieved by de-

signing controllers using hybrid feedback control and tracking control

techniques. Here, we have established the complete synchronization

between the two identical Sprott model L using both the methods.

These synchronization scheme are based on Lyapunov stability theo-

rem. The error term goes to zero after a very short time for both the

cases, as is verified by numerical simulations. The same technique is

applicable for any pair of identical coupled systems and can be used

in many areas such as chemical reactions, neural networks, electrical

engineering and secure communication etc.

In chapter 6, we have studied an anti-synchronization scheme for

a general class of chaotic systems using a sliding mode control based

strategy. For this reason, a linear sliding surface is designed. The

reachability condition for the synchronization manifold for any initial

condition is proved to ensure global synchronization. This process

guarantees finite time convergence. Robustness of the control system

is achieved by tuning a control parameter and introducing a control

vector based on partial tracking of the disturbances. A chattering-

free continuous analogue of the discontinuous sliding mode controller
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is also discussed. In contrast to the usual diffusive coupling approach,

our method accommodates all kind of systems without imposing any

symmetry restrictions. Easy realization, fast response and insensi-

tivity to variation in plant parameters or external disturbances, are

the inherent advantages of this method. In order to support our find-

ings, we have applied our method to anti-synchronize two identical

coupled Sprott systems and two identical coupled Rössler systems.

In both the above situations, we have established that the error term

reduces to zero after a short time interval which is the benefit of

the sliding mode controller design. Numerical simulation results are

presented to show the feasibility and effectiveness of the approach.

This method would prove to be useful in various disciplines like neu-

ral networks, information processing, chemical reactions, biological

systems, robotics etc.

In chapter 7, we have analyzed linear generalized synchronization

for unidirectionally coupled chaotic systems. In this method, the

asymptotic nature of the response system can be predicted in ad-

vance by knowing the asymptotic nature of the driving system. This

is achieved by using the asymptotic functional relationship between

the states of the driving system and the response system. Again, the

matrix associated with linear transformation being invertible, the

behaviour of the driving system can be determined by knowing the

behaviour of the response system in the long run. In order to illus-

trate the theory, chaotic Sprott model L is considered. Here, we have

studied three cases by changing the transformation matrix. The effi-

ciency of this method is verified by numerical simulations. We believe
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that this synchronization method will prove to be useful for applica-

tion in secure communication, electronic circuits, biological systems

etc.

In chapter 8, we have studied generalized synchronization of cou-

pled non-linear oscillators using open-plus-closed-loop (OPCL) con-

trol method. For a master-slave pair, we generate another dynamical

system, commonly known as goal system which depends on master

system. Actually, the goal dynamical systems is a function of the

master system. This function is, quite appropriately, called the goal

function. Five distinct cases are discussed by changing the nature of

the goal function. Here, we have shown the synchronization of two

different chaotic systems where the asymptotic functional relation

between them depends on the states of a third chaotic dynamical

system. This example is quite promising and itself demands further

study as we can accommodate three chaotic systems within the same

framework. Such approaches may have important cryptographic ap-

plications. Numerical simulation is done to show how the difference

between the goal system and the slave system reduces to zero with

time. This method is mostly independent of the system parameters.

This framework is expected to have applications in practical life, for

example, robotic systems, chemical systems, communication systems

etc.

In chapter 9, stability of time delay system has been discussed.

Routh-Hurwitz criterion is used to find the stability condition at the

critical points of the time-delayed system in absence of delay. In pres-

ence of delay, we investigate how the stable critical points of the orig-
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inal system(without delay) undergo Hopf bifurcation and lose their

stability. Interestingly, this transformation of stability behaviour of

the critical points with variation of time delay is a cyclic process

and it keeps repeating itself. Lag generalized synchronization is then

studied for the coupled Sprott system with multiple time delay. Us-

ing Lyapunov stability theory, the generalized delay synchronization

criteria is obtained. OPCL control technique is suitably modified

in this context to construct the controller which brings about syn-

chronization. Lag complete and lag anti-synchronization arises as

special cases in our study. Another point of importance is the use of

system state variables in the transformation matrix. The synchro-

nization is global and asymptotically stable. Five different cases are

analyzed. To test the analytical findings, numerical simulation is

performed. This method is suitable for electronic experiments, laser

physics, neural systems, engineering sciences and so on.
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Chapter 11

Possible Future Developments

Since the discovery of chaos, it has been a part of the vibrant world

of scientific research. It is not limited only to mathematical sciences.

It is rapidly approaching towards various other fields, especially bio-

logical systems. To elucidate the role of chaos in biological systems,

W.J. Freeman gives a very interesting observation regarding chaos.

According to him, human brain, in absence of chaotic behaviour, may

not work properly [12, 20]. This statement emphasizes the fact that

the control methods in chaos theory is going to play a very significant

role in development of the artificial neural systems.

At present time, no one can think of a world without electricity.

Due to external parameters, mechanical vibration, natural disasters,

human creator, insufficient loads, the power systems may fail to ful-

fil our requirement. It is a big issue for industrial fields, high-speed

electrified transportation system [87] etc. In this situation, chaos

synchronization has a major role to play. By stabilizing the power

systems which function as a network, it may develop the existing

power supply schemes and control the possibly erratic behaviour of
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the power signals. It is expected that the stability of non-linear

chaotic dynamical systems and their control will become a hotbed of

research activity, drawing experts from diverse fields like mathemat-

ics, physics, engineering sciences, biological and chemical sciences etc.

We may finally conclude that the aim of the thesis is achieved

successfully. The research work undertaken so far has opened up

some extremely interesting possibilities for future work. Application

of the methods of control and synchronization studied in the thesis,

specially in the context of biological problems, is one of the possible

lines of work. We believe that our proposed methods would prove to

be useful in various disciplines like secure communication, neural net-

works, information processing, chemical reactions, biological system,

quantum physics, electronic circuits, secret messaging, engineering

sciences, mathematics etc.
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