NAME
: SANJAY MONDAL
COLLEGE ROLL NO : SNUG /089/19
DEPARTMENT : SANSKRIT
YEAR
: 2020
signature : Sanjay Mondal

- Introduction to water pollution:-
water is typically referred to as polluted when it is impaired by anthropogenic contaminants. Due to these contaminants it either does not support a human use, such as drinking water, or under goes a marked shift in its ability to support its biotic communities such as fish. Natural phenomena such as volcanoes, algal blooms, storms, and earthquakes also cause, major changes in water quality and the ecological status of water.
water pollution is a major global problem. It reguirs ongoing evaluation and revision of water resource policy at all levels. It has been suggested that water pollution is the leading worldwide causer of death and diseases. Water pollution accounted for the deaths of 1.8 million people in 2015.
- water pollution :-

Water pollution is the contamination of water bodies, usually as a result of human activities. water bodies include for example lakes, rivers, oceans, aquifers and groundwater. Water pollution results when contaminants are introduced into the natural water environment. For example releasing inadervately treated wastewater in to natural water bodies can lead to degradation of

\Rightarrow Marine pollution
aquatic ecosystems. In turn this can lead to public health problems for people living downstream. They may use the same polluted river water for drinking or irrigation. Water pollution is the leading worldwide cause of death and disease; e.g.dued to water-borne diseases.

- Types:
- surface water pollution:-
surface water pollution includes pollution of rivers, lakes and oceans. A subset of surface water pollution is marine pollution.
- Marine pollution :-
one common path of entry of entry by contaminanits to the sea are rivers. An example is directly discharging sewage and industrial waste into the ocean. Pollution such as this occurs particularly in developing nations. In fact, the 10 largest emitters of oceanic plastic pollution worldwide are, from the most to the least, china, Indonesia, philippines, vietnam, Snilanko Thailand. Egypt. Malaysia, Nigeria, and Bangladesh largely through the rives yengtze. Indus, yellow. Hair, Nile, Ganges. Amur, and the Mekong and accounting for 90 parcent of all the

$$
P-04
$$

plastic that reaches the the world's oceans.
Groundwater pollution:-
Interactions between grocendwater and surface water are complex. consequently; Groundwater pollution, also referred to as groundwater contamination, is not as easily classified as surface water pollution. By its very nature, ground water aquifers are susceptible to contamination from sources that may not directly affect surface water bodies. The distinction of point V s. non-point source may be irmalevant in some situations.

- Categories of pollution Sources: Surface water and groundwater have often been studied and managed as separate resources even though they are interrelated. Surface water seeps through the soil and becomes groundwater. Conversely, groundwater can also feed Surface water sources. Sources of serface water pollution are generally grouped into two categories besed ontheir origin.
- point Sources:-
point source water pollution refers to contami-

P-06
nants that enter a waterway from a single, identifiable source, such as a pipe or ditch. Example of sources in this category include discharges from a sewage treatment plant, a factory, or a city storm drain.

Non-point sources:-
Nonpoint source pollution refers to diffuse contamination that does not originate from a single discrete source. This type of podiution is often the cumulative effect of small amounts of contaminants gathered from a large area. a common example is the leaching out of nitrogencompounds from fertilized agricultural lands. Nutrient runoff in strom water from 'Sheet flow' over an agricultural field or a forest are also cited as examples of non-point source pollution.

- contaminants and their sources:

The specific contaminants leading to pollution in water include a wide spectrum of chemicals, pathogens, and physical changes such as elevated temperature and discolonatron. While many of the chemicals and sub. stances that are regulated may be naturally. occurring the concentration usually determinose ne what is a nature component of water

and what is a contaminant. High concentrations of naturally oceurring substances can have negative impacts on aquatic flora and fauna.

- pathogens:-

Disease -causing microorganisms are referred to as pathogens. pathogens can produce waterborne diseases in either human ar animal hosts. coliform bacteria, which are not an actual cause of disease, are commonly used as a bacterial indicator of water pollution. Other microorganisms somethimes found in contaminated surface waters that have cacesed human health problems include:

- Burkholderia pseudomallei
- Cryptasporidium parvum
- Giardia lamblia
- Salmonella
- Norovirus and other viruses
- parasitic worms including the schistosoma type.
- Organic, inorganic and macroscopic contaminants:-
contaminants may include organic and inorganic substances. Many of the chemical

\Rightarrow organic. Inorganic contaminants
substances are toxic.
* organic water pollutants include:-
- Detergents
- Disinfection by-products found in chemically disinfected drinking water, such as chloroform.
- Food processing waste, which can include oxygen-demanding substances, fats and grease.
- Insecticides and herbicides, a huge range of organohalides and other chemical compounds.
- volatile organic compounds, such as induestrial solvents, from improper storage.
- Perchbrate
- various chemical compounds found in personal hygiene and cosmetic products.

Inorganic water pollutants include:-

- Acidity caused by industrial discharges
- Ammonia from food processing waste.
- Chemical waste as industrial by-products.
- Heavy metals from motor vehicles and acid mine drainage.
- Secretion of creosote preservative into the aquatic ecosystem.
Macroscopic pollution - large visible items polluting the water -may be termed 'floatables' in an urban storm water context. or marine debris when found on the open seas, and can include such items as:
- Trash or garbage discarded by people on the ground, along with accidental dumping of rubbish, that are washed by rainfall into storm drains and eventually discharged into surface water.
- shipwrecles, large derelict ships.
- Change in temperature:-

Thermal pollution is the rise or fall in the temperature of a natural body of water caused by human influence. A common cause of thermal pollution, results in a change. in the use of water as a coolant by power plants and industrial manufacturers. Elevated water temperatures decrease oxygen levels, which can kill fish and - alter food chain composition, and forster in vasion by new thermaphilic. species. urban runoff may also elevate temperature in surface waters.

Measurement:-
water pollution may be analyzed through serveral brood categories of methods: physical. chemical and biological. Mast involve collection of samples, followed by specialized analytical test. Some methods may be conducted in situ. without sampling, such as temperature. Goverment agencies and research onganizetion have published standerdized, validated analytical test methods to facilitate the comparability of results from disparte testing events.

Sampling :-
Sampling of water for physical of chemical testing can be done by several methods, depending on the accuracy needed and the characteristics of the contaminant. Many contamination events are sharply restricted in time, most commonly in association with rain events. For this reas on 'grab' samples are often inadequate for fully quantifying contaminant levels. Scientists gathering this typs of data often employ areto-sampler. divices that pump increments of water at either time or discharge intervals.
a physical testing:-
common physical tests of water include temperature, solids concentrations (e. gtotal suspended solids (TTS)) and turbidity.

Chemical testing:-
water samples may be examined using the principles of analytical chemistry. Many published test methods are available for both organic and inorganic compounds. Frequently used methods include PH. biochemical oxygen demand, chemical oxygen demand, nutrients, metals, zinc, cadmium, oil and grease and pesticides.

Biological testing:-
Biological testing involves the use of plant animal indicators to monitor the health of an aquatic ecosystem. They are any biological species of speacies whose function, population, can reveal what degree of ecosystem is present. one example of a group of bioindicators are the copepods and other small water crustareans that are present in many water bodies. such organisms can be monitored for chenges. physiological that may indicate a problem whithin their ecosystem.

Control of pollution:-

- Municipal wastewater treatment:

In urban areas of developed countries, miniipal wastewater is typically treated by centralized sewage treatment plants. well-designed and operated system can remove 90 parent or more of the pollution load in sewage. Some plants have additional system to remove mitrients and path ogens, but these more advanced treatment steps get progressively more expensive.
Nature-based solutions are also being used instead of centralized treatment plants.

- On-site sanitation and safely managed Sanitation:-
Households or businesses not served by a municipal treatment plant may have an individualsptic tank. Which pre-treats the wastewater on site and infiltrates it into the soil. Improperly designed or installed septic systems can cause ground water pollution.
Globally; about 4.5 billion do not have safely managed sanitation as of 2017, according to an estinmate by the joint Monitiring programme for water supply and sanitation. The use of Safely
managed sanitation services would prevent this ty pe of water pollution.
- Industrial wastewater treatment:Some industrial facilities generate wastew tor that is similar to domestic sewage and can be treated by sewage treatment plants. Industrial that generate wastewater with high needed specialized treatment system. Industries generating large volumes of ω astewater typically operate their own treatment systems. Some industrials have been successful at redesigning the ir manufacturing processesto reduce, through a process called pollution prevent tron.

Agricultural wastewater treatment:
Non point source controls
sediment washed off fields is the largest source of agricultural. pollution in the united states. Faroars may utilize erosion controls to reduce runoff flows and retain soil on their fields.
point source wastewater treatment
Farms with large livestock and poultry operations such as factory farms, are called in the feedlots us and are being subject to increasing government regulation. Animal sherries are usually treated by spray or trickle application to grassland. Some animals slurries are treated by mixing with straw and composted at high temperature to produce bacteriologically Sterile and friable manure for soil improvement.

Erosion and Sediment control from construction sites:-
Sediment from construction sites is managed by installation of:

- Erosion controls; such mulching and hydroseedirg
- semdiment controls, such as seniment basins and sit farces.
Discharge of toxic chemicals such as motor fuels and concrete washout prevented by use of:
- spill prevention and control Plans.
- control of urban runoff (stormwater):-

Effective control of urban fran off involves reduceing the velocity and flow of storm water, as well as reducing pollutent discharges. Local goverments use a variety of storm water management techniques to reduce the effects of urban franfof. These techniques, called best management. practices for water pollution in the U.S, may focus on water quantity control, while others focus on improving water quality, and some perform both functions.
Data collection:
All the data of this project have been. collected from Google, wikipedia and my friends.

AckNOWLEDGEMENT
The success and final out come of the Project required a lot of guidance \& assitance from many people and 9 am extremely priviliged to have got this all along the completion of my project.

9 respect and thank prof.N.C.maity for providing me an opportunity to do the project work and giving us all support and guidance which made me complete the project work.

NARENDRAPUR

ENVIRONMENTAL STUDIES

PROJECT TITLE:
Air pollution in cities and measures to control it.
name : Sanjoy Mondal
COLLEGE ROLL NO : BNUG/051/19
department : Bengali
YEAR
SIGNATURE
: 2020

ACKNOWLEDGEMENT
The success and final outcome of this project required a lot of quidance and aspidance from many people and I am extremely prititutiged to have got fir all along the completion of my project. All that I have done is only due to such supervision and assistance and I would not forget to thank them.

I respect and thank Prof. N.C. Maity, for proxding me an opportunity to do the project work \& giving ur all support and guidance which made me complete the project duty. I am extremely thankful to him for providing such a nice support and guidance.

I would not forget to remember swami Shartragnananda, who boo an interest on our project work \& guided us all atong, till the competition of our project work by providing all the necerraary informations. I am thankful to and fortunate enough to get constant encouragement, support and guidance from all leaching staffer of Bengali Repartment, which helped us all in-ruccossfully completing our project work.

INTRODUCTION
Environmental Ir sues: $=$
Human population size has grown enormously over the last hundred years. This means increase in demand for ford, water, home, electricity, roads, auto mobiles and numerous other commodities. These demands are exerting tremendous pressure on our natural resourcess and are also contributing to pollution.
pollution is any undesirable change in physical, Chemical or biological characteristics of air, Land, water or soil. Agents that bring about such on undesirable change are call pollutants. In order to control environmental pollution the Government of India has passed the Environment (protection) Act, 1986 to protect and improve the quality of our environment (air, water and soil).

Air pollution in cities and measures to control it

It is the occurence or presence of any material or gar in the air in such a concentration which is harmful to man, vegetation, animals and their environment. Substances and factors which cause air pollution are called air pollutants. Air pollution is both natural and anthropogenic. Anthropogenic pollution comer from both mobile and fired sources. Air pollutants coming directly from the pollution sourcess are called primary air pollutants $\left(\mathrm{C}_{\mathrm{O}}, \mathrm{SO}_{2}\right.$, hydrocarbon. Reaction between two or more primary air pollutants giver rise to secondary air pollutanter (crone, PAN).
History of air pollution:- The oregin of air pollution on the earth can be traced from the timer when man starlet using firewood ar a means of cooking and healing. Hippocraler has mentoned air pollution in 400 BC . With the discovery and increasing use of coal, ain pollution became more pronounced especially in urban arear. It war recognized ar a problem 700 years ago in London during the industriat in the form of smoke pollution, which prompted king Edward

I would to make the first antipollution law lo restrict people from using EA coal for domestic healing in the year 1273. In the year 1300 another Act banning the use of coal war passed. Defying the law led to imposition of capital punishment. In spite of this year air pollution became a serious problem in London during the industrial revolution due to the use of coal in industries. The earlist recorded major disaster war the 'London Smog' that occurred in 1952 that resulted in more than 4000 deaths due to the accumulation of air pollutants over the city for five days.

In Europe, arrund the middle of the 19 th century, a black form of the peppered moth was noticed in industrial areas. Usually the normal peppered moth ir well camouflaged on a clean lichen covered tree. However the peppered pattern was easily spotted and picked up by birds on the smoke blackend bark of trees in the industrial area, while the black form remained well camouflaged. Thur while the peppered patterned moths were successful in surviving in clean non-industrial areas.
F
The black coloured moths were successful in industrial crear. With the spread of indurtrilization, it has been observed that the black forms are not only nee in peppered moth, but also in many other moths. This is a classic case of pollution leading to adaptation. Air pollution began to increase in the beginni$n g$ of the twentieth century with the development of the transportation systems and large - scale use of petrol and diesel. The severe air quality problems due to the formation of photochemical smog from the combustion residues of diesel and petrol engines were felt for the first time in Lo Angels. Pollution dueto auto-exhaust remains a serious environmental issue in many developed and developing countries including India.
sourer of air pollution

- The sources of air pollution can be dividee into two categories -
i) Natural sources:=
(a) Ash from burning volcanoes, dust from storm, forest fires
(b) Pollen grains from flowers in air
ii) Anthropogenic (hama n-made) sources:
(Q) Power stations using coal or crude oil.
(b) furnaces using coal, caltle dung cakes, firewood, kerosene etc.
(c) steam engines used in railways, steamers, motor vehiles, etc.
(d) Motor and internal combustion engines which run on petrol, diesel, kerosene, etc.
(c) Vegetable oils, kerosene and coal as household fuels.
(f) Sewers and domestic drains emanating foul gases.
(9) Pesticide residues in air

Major air pollutants
Some major air pollutants are discussed here. Carbon dioxide: Carbon dioxide is one of the major gases which contribute to air pollution. It is mainly produced during the combustion of fuel in factories, power stations, household etc. The increasing CO_{2} in the atmosphere is likely to have the following effects:
(4) Arise in almosphere temperature due to greenhouse effectl.
ii) Reduced productivity of the marine ecosystem. This is due to the fact that water in the oceans would be more acidic due to increased concentration of CO in the air, which dirrolve in the water.
iii) Global warming: The increased surface temperature would cause melting of continental and mountain glaciers and thus would cause flooding of coastal areas of some countries.
Sulphur dioxide: = It is produced by the burning of coal in powerhouses and automobiles (car, lruckseld. It cause cholorosir and necrosis of plants, inritalion in eyer and injury to the respiratory tract (asthma, bronchitis) in humans responsible for discoloration and deterioration of building.
High concentration of sulphur dioxide in the atmosphere dirrolves in rain drops to form sulphuric acid which canser acid rain.
Carbon monoxide: $=$ Carbon monoxide is produced as a result of incomplete combustion of fossil fuels like coal, petroleum and wood charcoal. Automobiles using diesel and petroleum are the major sources of carbon monoxide is more dengerous that than carbon dioxide. It is a poisonous gas which causer respiratory problems. When it reacher the blood stream, due to its high affinity for haemoglobin, it replacer oxygen. It also cause
giddiness, headache and interferes with normal function of the heart.
Fluorides: = On heating, rocks, soils and minerals that contain fluorides, give out hydrogen fluoride gas. This is an extremely toxic gar, which causes serious injury to livestock and cattle.
Oxides of nitrogen: = A few oxides of nitrogen, such as nitric oxide (NO), nitrous oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$ and nitrogen dioxide (NO_{2}) are produced by natural processes as well ar from thermal power stations, factories, automobiles and air crafts (due to burning of coal and petroleum). They reduce the oxygen carrying capacity of blood, may cause eye irritalion and skin cancer in human being.
Domestic air pollutants: = Smoke from cigarettes, bini, cigar and other such objects using burning tobacco, burning of coal, firewood, cow dung caker, kerosene oil and liquified gases are major domestic pollutants. The common pollutant gases emitted during the domestic burning of coal, kerosene oil, firewood, cow dang cakes, et are carbon monoxide (CO), Carbon dioxide (CO2), sulphur dioxide (SO2), etc. The pollution due to these pollutants causes suffocation, eye and lung diseases and low visibility.

The ben main causer of air pollution are a) The burning of fossil fuels.
b) Industrial Emission.
c) Indor air pollution.
d) Wildfires.
e) Microbial decaying process.
f) Transportation,
9) Open burning of garbage waste.
h) Construction and demolition.
i) Agricultural Activities.
j) Use of chemical and synthetic products.

Effect of Air Pollution
Effect on living things.
Effect on non-living things.
Effect on living things
Air pollution and human health:
i) Irritation of eyer, throat, nose and respiratory system.
ii) Respiratory damage through tobacco smoke.
iii) Convubions, coma due to lead poisoning.
iv) Cigarette smoking cause cardiovascular diseases, due to cadmium particulates.
v) Radioactive dust causer genetic effects on the next generation.
vi) The mercury from combustion of fossil fuel affect the nerver, brain and kidney.

Air pollution and vegetation:
i) The direct use of pesticides affect the growth of metabolic activities by destroying chtorophil and also by disrupting photo synthesis.
iii) Rise of ozone causes Necrosis i.e. Damaging the leaver. iii) The rise of NO_{2} causes Abrcisoion i.e Premature fall of leaver -results in reduction in crop production. iv) Rise in SO_{2} causes chlorisir i.e Yellowing of the leaves. Air pollution and animals:
i) When the animals during grazing consume the particulate coated plants mainly with fluorine, lead, arsenic they get affected, resulting into illness or poisoning or even death.
ii) The pets also suffer due to the lung diseases.
iii) When animals are fed with oil cakes or grass, the remain r of insecticidies/pesticides st sellled on vegetation, harm the digestive syptem very severely.

Effect on non-liviggs
Effect on metals:
i) Corrosion or abrasion of metals.
ii) The acid gases like $\mathrm{O}_{3}, \mathrm{SO}_{2}, \mathrm{NO}_{2}$ affect the strength of the flexile.
iii) The building material gels affected by SO_{2} and acid rains.
iv) SO_{2} and acid gases affect the quality of paper and leather. v) The pails get decoloured by SO_{2} and $\mathrm{H}_{2} \mathrm{~S}$.

Effect on climate:
i) Carbon cycle is broken.
iii) CO is heavy gas and has capacity to absorb the heat. Rise of CO_{2} has caused the global warming.
iii) The release of CEC gases have made an impact on ozone layer due to the ozone depletion, cosmic rays reaches to earth increasing temperature of earth.
Control of Air pollution
a) Electrostatic Precipitator:
i) It is mont effective device
to remove over 99\% of particulate molter present in the exhaust from a thermal power plant.
iii) It has electrode wires that are maintained at several thousand volts which produce a corona that releases electron iii) These electrons attach to dust particles giving them a net negative charge.
iv) The collecting plater are grounded and attach the charged dust particles.
v) The velocity of air between the plates must be low enogh to allow the dust to fall.
b) Scrubber: The industries which produce so as a dry product must have serulting mechanism installed in them In this method, effluents containing sulphur dioxide are
passed through a sturry of water and crushed limestone (cocos).
C) Control of Automatic Exhaust:
1). Automobiles are major cause for atmospheric pollution_atleast in the metro cities. Proper maintenance of automobiler along with use of lead free petrol or diesel can reduce the pollutanter they emit.
ii) Catalytic converters have costly metals like pa-tinum-palladium and rhodiam ar catalyser. Exhaust gases first pars through catalybic converter. Hydrocarbons which have been left unburnt are oxidised to produce carbon dioxide and water. Carbon monoxide is also oxidised to form CO_{2}. However, nitrogen oxide splits up to form nitrogen gas. Automobiles fitted with catalytic converler should not use leaded petrol because lead inactivates the catalyst of the converter.

The air (Prevention \& control of Pollution) Aet, 1981: The Act deals with the preservation of air quality and the control of air pollution with a concern. for the detrimental affects of air pollution on human health and also ${ }^{\text {on the biological world. In 1987, important }}$ ammentment to Air Act 1981 war made and noise. war recognised as an air pollutant.

NARENDRAPUR

ENVIRONMENTAL STUDIES

PROJECT TITLE:
Air pollution in cities and measures to control it.
name : Sanjoy Mondal
COLLEGE ROLL NO : BNUG/051/19
department : Bengali
YEAR
SIGNATURE
: 2020

ACKNOWLEDGEMENT
The success and final outcome of this project required a lot of quidance and aspidance from many people and I am extremely prititutiged to have got fir all along the completion of my project. All that I have done is only due to such supervision and assistance and I would not forget to thank them.

I respect and thank Prof. N.C. Maity, for proxding me an opportunity to do the project work \& giving ur all support and guidance which made me complete the project duty. I am extremely thankful to him for providing such a nice support and guidance.

I would not forget to remember swami Shartragnananda, who boo an interest on our project work \& guided us all atong, till the competition of our project work by providing all the necerraary informations. I am thankful to and fortunate enough to get constant encouragement, support and guidance from all leaching staffer of Bengali Repartment, which helped us all in-ruccossfully completing our project work.

INTRODUCTION
Environmental Ir sues: $=$
Human population size has grown enormously over the last hundred years. This means increase in demand for ford, water, home, electricity, roads, auto mobiles and numerous other commodities. These demands are exerting tremendous pressure on our natural resourcess and are also contributing to pollution.
pollution is any undesirable change in physical, Chemical or biological characteristics of air, Land, water or soil. Agents that bring about such on undesirable change are call pollutants. In order to control environmental pollution the Government of India has passed the Environment (protection) Act, 1986 to protect and improve the quality of our environment (air, water and soil).

Air pollution in cities and measures to control it

It is the occurence or presence of any material or gar in the air in such a concentration which is harmful to man, vegetation, animals and their environment. Substances and factors which cause air pollution are called air pollutants. Air pollution is both natural and anthropogenic. Anthropogenic pollution comer from both mobile and fired sources. Air pollutants coming directly from the pollution sourcess are called primary air pollutants $\left(\mathrm{C}_{\mathrm{O}}, \mathrm{SO}_{2}\right.$, hydrocarbon. Reaction between two or more primary air pollutants giver rise to secondary air pollutanter (crone, PAN).
History of air pollution:- The oregin of air pollution on the earth can be traced from the timer when man starlet using firewood ar a means of cooking and healing. Hippocraler has mentoned air pollution in 400 BC . With the discovery and increasing use of coal, ain pollution became more pronounced especially in urban arear. It war recognized ar a problem 700 years ago in London during the industriat in the form of smoke pollution, which prompted king Edward

I would to make the first antipollution law lo restrict people from using EA coal for domestic healing in the year 1273. In the year 1300 another Act banning the use of coal war passed. Defying the law led to imposition of capital punishment. In spite of this year air pollution became a serious problem in London during the industrial revolution due to the use of coal in industries. The earlist recorded major disaster war the 'London Smog' that occurred in 1952 that resulted in more than 4000 deaths due to the accumulation of air pollutants over the city for five days.

In Europe, arrund the middle of the 19 th century, a black form of the peppered moth was noticed in industrial areas. Usually the normal peppered moth ir well camouflaged on a clean lichen covered tree. However the peppered pattern was easily spotted and picked up by birds on the smoke blackend bark of trees in the industrial area, while the black form remained well camouflaged. Thur while the peppered patterned moths were successful in surviving in clean non-industrial areas.
F
The black coloured moths were successful in industrial crear. With the spread of indurtrilization, it has been observed that the black forms are not only nee in peppered moth, but also in many other moths. This is a classic case of pollution leading to adaptation. Air pollution began to increase in the beginni$n g$ of the twentieth century with the development of the transportation systems and large - scale use of petrol and diesel. The severe air quality problems due to the formation of photochemical smog from the combustion residues of diesel and petrol engines were felt for the first time in Lo Angels. Pollution dueto auto-exhaust remains a serious environmental issue in many developed and developing countries including India.
sourer of air pollution

- The sources of air pollution can be dividee into two categories -
i) Natural sources:=
(a) Ash from burning volcanoes, dust from storm, forest fires
(b) Pollen grains from flowers in air
ii) Anthropogenic (hama n-made) sources:
(Q) Power stations using coal or crude oil.
(b) furnaces using coal, caltle dung cakes, firewood, kerosene etc.
(c) steam engines used in railways, steamers, motor vehiles, etc.
(d) Motor and internal combustion engines which run on petrol, diesel, kerosene, etc.
(c) Vegetable oils, kerosene and coal as household fuels.
(f) Sewers and domestic drains emanating foul gases.
(9) Pesticide residues in air

Major air pollutants
Some major air pollutants are discussed here. Carbon dioxide: Carbon dioxide is one of the major gases which contribute to air pollution. It is mainly produced during the combustion of fuel in factories, power stations, household etc. The increasing CO_{2} in the atmosphere is likely to have the following effects:
(4) Arise in almosphere temperature due to greenhouse effectl.
ii) Reduced productivity of the marine ecosystem. This is due to the fact that water in the oceans would be more acidic due to increased concentration of CO in the air, which dirrolve in the water.
iii) Global warming: The increased surface temperature would cause melting of continental and mountain glaciers and thus would cause flooding of coastal areas of some countries.
Sulphur dioxide: = It is produced by the burning of coal in powerhouses and automobiles (car, lruckseld. It cause cholorosir and necrosis of plants, inritalion in eyer and injury to the respiratory tract (asthma, bronchitis) in humans responsible for discoloration and deterioration of building.
High concentration of sulphur dioxide in the atmosphere dirrolves in rain drops to form sulphuric acid which canser acid rain.
Carbon monoxide: $=$ Carbon monoxide is produced as a result of incomplete combustion of fossil fuels like coal, petroleum and wood charcoal. Automobiles using diesel and petroleum are the major sources of carbon monoxide is more dengerous that than carbon dioxide. It is a poisonous gas which causer respiratory problems. When it reacher the blood stream, due to its high affinity for haemoglobin, it replacer oxygen. It also cause
giddiness, headache and interferes with normal function of the heart.
Fluorides: = On heating, rocks, soils and minerals that contain fluorides, give out hydrogen fluoride gas. This is an extremely toxic gar, which causes serious injury to livestock and cattle.
Oxides of nitrogen: = A few oxides of nitrogen, such as nitric oxide (NO), nitrous oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$ and nitrogen dioxide (NO_{2}) are produced by natural processes as well ar from thermal power stations, factories, automobiles and air crafts (due to burning of coal and petroleum). They reduce the oxygen carrying capacity of blood, may cause eye irritalion and skin cancer in human being.
Domestic air pollutants: = Smoke from cigarettes, bini, cigar and other such objects using burning tobacco, burning of coal, firewood, cow dung caker, kerosene oil and liquified gases are major domestic pollutants. The common pollutant gases emitted during the domestic burning of coal, kerosene oil, firewood, cow dang cakes, et are carbon monoxide (CO), Carbon dioxide (CO2), sulphur dioxide (SO2), etc. The pollution due to these pollutants causes suffocation, eye and lung diseases and low visibility.

The ben main causer of air pollution are a) The burning of fossil fuels.
b) Industrial Emission.
c) Indor air pollution.
d) Wildfires.
e) Microbial decaying process.
f) Transportation,
9) Open burning of garbage waste.
h) Construction and demolition.
i) Agricultural Activities.
j) Use of chemical and synthetic products.

Effect of Air Pollution
Effect on living things.
Effect on non-living things.
Effect on living things
Air pollution and human health:
i) Irritation of eyer, throat, nose and respiratory system.
ii) Respiratory damage through tobacco smoke.
iii) Convubions, coma due to lead poisoning.
iv) Cigarette smoking cause cardiovascular diseases, due to cadmium particulates.
v) Radioactive dust causer genetic effects on the next generation.
vi) The mercury from combustion of fossil fuel affect the nerver, brain and kidney.

Air pollution and vegetation:
i) The direct use of pesticides affect the growth of metabolic activities by destroying chtorophil and also by disrupting photo synthesis.
iii) Rise of ozone causes Necrosis i.e. Damaging the leaver. iii) The rise of NO_{2} causes Abrcisoion i.e Premature fall of leaver -results in reduction in crop production. iv) Rise in SO_{2} causes chlorisir i.e Yellowing of the leaves. Air pollution and animals:
i) When the animals during grazing consume the particulate coated plants mainly with fluorine, lead, arsenic they get affected, resulting into illness or poisoning or even death.
ii) The pets also suffer due to the lung diseases.
iii) When animals are fed with oil cakes or grass, the remain r of insecticidies/pesticides st sellled on vegetation, harm the digestive syptem very severely.

Effect on non-liviggs
Effect on metals:
i) Corrosion or abrasion of metals.
ii) The acid gases like $\mathrm{O}_{3}, \mathrm{SO}_{2}, \mathrm{NO}_{2}$ affect the strength of the flexile.
iii) The building material gels affected by SO_{2} and acid rains.
iv) SO_{2} and acid gases affect the quality of paper and leather. v) The pails get decoloured by SO_{2} and $\mathrm{H}_{2} \mathrm{~S}$.

Effect on climate:
i) Carbon cycle is broken.
iii) CO is heavy gas and has capacity to absorb the heat. Rise of CO_{2} has caused the global warming.
iii) The release of CEC gases have made an impact on ozone layer due to the ozone depletion, cosmic rays reaches to earth increasing temperature of earth.
Control of Air pollution
a) Electrostatic Precipitator:
i) It is mont effective device
to remove over 99\% of particulate molter present in the exhaust from a thermal power plant.
iii) It has electrode wires that are maintained at several thousand volts which produce a corona that releases electron iii) These electrons attach to dust particles giving them a net negative charge.
iv) The collecting plater are grounded and attach the charged dust particles.
v) The velocity of air between the plates must be low enogh to allow the dust to fall.
b) Scrubber: The industries which produce so as a dry product must have serulting mechanism installed in them In this method, effluents containing sulphur dioxide are
passed through a sturry of water and crushed limestone (cocos).
C) Control of Automatic Exhaust:
1). Automobiles are major cause for atmospheric pollution_atleast in the metro cities. Proper maintenance of automobiler along with use of lead free petrol or diesel can reduce the pollutanter they emit.
ii) Catalytic converters have costly metals like pa-tinum-palladium and rhodiam ar catalyser. Exhaust gases first pars through catalybic converter. Hydrocarbons which have been left unburnt are oxidised to produce carbon dioxide and water. Carbon monoxide is also oxidised to form CO_{2}. However, nitrogen oxide splits up to form nitrogen gas. Automobiles fitted with catalytic converler should not use leaded petrol because lead inactivates the catalyst of the converter.

The air (Prevention \& control of Pollution) Aet, 1981: The Act deals with the preservation of air quality and the control of air pollution with a concern. for the detrimental affects of air pollution on human health and also ${ }^{\text {on the biological world. In 1987, important }}$ ammentment to Air Act 1981 war made and noise. war recognised as an air pollutant.

NARENDRAPUR

ENVIRONMENTAL STUDIES

PROJECT TITLE:
Nitrogen cycle and its importance for living beings

NAME	$:$ SANTANU DAS
COLLEGE ROLL NO	$:$ PHUG/Ot6 $/ 19$
DEPARTMENT	$:$ PHYSICS
YEAR	$: 2020$
SIGNATURE	$:$ Santanu Das

CONTENTS

- what is Nitrogen cycle
- stages
- In marine Ecosystem
- Importance
- Conclusion
- Acknowledgement
- Contificate.

Collegenollna \rightarrow PHUK/OF6/19
Nitrogen cycle defination
"Nitrogen eycle is a biogeochemical process which transform the inert nitrogen present in the atmosphere to a more usable form of living organisms.

Four the move, nitrogen is a key nutrient elements for plants. However; the abundant nitrogen in the atmosphere cannot be used directly by plants or animals. Read on to explone how the. Nitrogen cycle makes usable nitrogen available to plants and other living organisms.
What is Nitrogen cycle?
Nitrogen cycle is a biógeochemical process through which nitrogen is converted into many form, Consecutively passing from the atmosphere to the soil to organisms and back into the atmosphere.

It involves several process such as nitrogen fixation, nitrification, denitrification, decay and putrefaction.

The nitrogen gus exists in both organic and inorganic forms. Organic nitrogen exists in living organism, and they get passed through o the food chain by the consumption of other living organisms.

Inorganic form of nitrogen are found in abundance in the atmosphere. The nitrogen in made available to plants by symbiotic bacteria which can convert the inert nitrogen into a usable form - Such a nitrites and nitrates

Nitrogen undergoes various types of transformation to maintain a balance in the ecosystem. Furthermore, this process extends to various biomes, with the maxine nitrogen cycle being one of the most complicated bioyeochemical cycles.

Nitrogen cycle

Stages of Nitrogen Cycle:
Process of Nimogen cycle consists of the
following steps - Nitrogen fixation, Nitrification, Assimilation Ammonification and Denitrification, the process take place in several stages and are explained below.

- Nitrogen fixation

It is the initial step of the nitrogen cycle. Here;, Ammo spherics nitrogen $\left(\mathrm{N}_{2}\right)$ which is primarily available in an inert forme is converted into the cable form-ammonin $\left(\mathrm{NH}_{3}\right)$.

During the process of nitrogen fixation, the invest form of nitrogen gas is deposited into soils form the atmosphere and surface waters, ming through precipitation. Later, the nitrogen undergoes a set of changes, in which two nitrogen atoms get separated and combine with hydrogen to form ammonia (NHEH)

The entwine process of Nitrogen Fixation is completed by symbiotic bacteria which are Known as Diazotrophs. Azotobacter and Rhizobium akee. hove a major role in this process. These bacteria consist of a nitrogenase enzyme which has the capability to combine gaseous nitrogen with b hydrogen to form nm ammonia.

Nitrogen fixation can occur
either by the atmospheric fixation which involves lightening or industrial fixation by manufacturing ammonia under high temperature and pressure condition. This can also be fixed through man made processes primarily industrial processes that create ammonia and nitrogen which fertilisers.

Types of Nitrogen Fixation

1. Atmospheric fixation: A natural phenomenon, where the energy of lightning breaks the nitrogen into nitrogen oxides and is then used by plants.
2. Industrial nitrogen fixation: Is a man made alternative that aids in nitrogen fixation by the use of ammonia. Ammonia is produced by the direct Combination of nitrogen and hydrogen and later, it is converted into various fertiblisers such as urea.
3. Biological nitrogen fixation:

We already know that nitrogen is not usable directly from the air for plants and animals. Bacteria like Rhizobium and blue-green oulgee transform the unusable form of nitrogen into other comprands that are more readily usable. These nitrogen compounds get fixed in the soil O by these microbes.
Nitrification.
In this process, the ammonia is converted into nitrate by the pressence of bacteria in the soil. Nitrites are formed by the oxidation of Ammonia with the help of Nimosomonas bacterium species. Later, the produced nitrites are converted into nitrates by Nitrobecter, This conversion is very important as animoria gas is toxis for plants.

This aneaction involved in the process of Nitrification is as follows:

$$
\begin{gathered}
2 \mathrm{NH}_{4}++3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{NO}_{2}^{-}+4 \mathrm{H}^{+}+2 \mathrm{H}_{2} \mathrm{O} \\
2 \mathrm{NO}_{2}^{-}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{NO}_{3}^{-}
\end{gathered}
$$

Assimilation
Primary producers - plants takes in the nitrogen compounds from the soil with the help of their roots, which are available in the form of ammonia, nitrite tons. nitrate ions or ammonium ions and are used in the formation of the plant and animal proteins. This way, it enters the food. Web when the primary Consumers eat

(

 AnmonificationWhen plaits or animals die, the wimogen present in the organic mutton is released back into the Soil. The decomposersnamely bacteria or fungi present in the soil. Convert the organic back into ammonium. This prowess of decomposition produces ammonia which is further used for other biological prows.

(21) Aenimification

Detruitrification is the process in which the nitrogen compounds makes its way back into the atmosphere by converting nitrate $\left(\mathrm{NO}_{3}^{-}\right)$into gaseous nitrogen (N). This process of the nitrogen cycle is the final stages and occurs in the absence. of oxygen. Denitrification is carried out by the denitrifying bacterial species - clostridium and Psendomonas. which will process nitrates to Gain oxygen and gives out free nitrogen gas as a byproduct. 2 Nimagen Cycle in Marine Ecosystem:

The process of the nitrogen cycle occurs in the same manner in the marine ecosystem as in the ternestrinal ecosystem. The only difference is that it is carried out by marine bacteria.

The niturgen-containing compounds that fall into the ocean as sediments get compressed ones long periods and form sedimentary nock. Due to the geological up lift, these sedimentary nocks move to land. Initially, it was not known that these nitrogen containing sedimen tory rocks are on essential souse of nitrogen. But recent researches have proved that the nitrogen from the rocks is released into the plants due to the weathering of rocks.

- Schematic Diagram:

Importance of Nitrogen cycle:
Importance of the nitrogen cycle are as follows:

1. Helps plants to synthesise chlomoplygll from the witrogen - Compronerds.
2. Helps in converting inert nitrogen gas into a usable form for the plants through the biochemial process.
3. In the process of ammonification, the bacteria help in decomposing the animal and plant matter, which indirectly helps to clean up the envinonment.
4. Nitrates and nitrites are released into the soil, Which helps in enriching the sail with necessary nutrients required for activation.
5. Nitrogen is an integral component of the all and it form's many crucial compounds and important biomolecules.

Nitrogen is also cycled by human activities such is combustion of frees and the use of nitrogen fertilises. These process, increase the levels of nitrogen Containing compounds in the atmosphere. The fertilisers containing nitrogen are washed away in lakes and rivers and results in eutrophication.

准 Conclusion:

- Nitrogen is aloundant in the atmosphere, but it is unusable to plants on animals unless it is converted into nitrogen compounds.
- Nitrogen - fixing bacteria play a crucial role in fixing the atmospheric nitrogen into nitrogen compounds that can be used by the plants.
- The plants absorb the anele nitrogen compsomads formonfrom the soil through their roots. Then, these nitrogen compounds are used for the production of proteins and other compounds in the cold. Cell.
- Animals assimilate nitrogen by consuming these plants of other animals that contain nitrogen. Humans consume proteins from these plants and animals and them, the nitrogen assimilates into our system.
- Awing the final stages of nitrogen cycle, bacterin and fungi help decompose organic matter, where the nitrogenous compounds get dissolved into the Soil which is again used by plants.
- Some bueteria then convert these nitrogenous compounds in the soil and thru it into nitrogen gas. Eventantity, it goes back to the atmosphere.
- These sets of process repeat containuously and then maintain the percentage of nitrogen in the atmosphere.

I convey my deep sense of gratitude to Sir, fer suggesting the way to find suitable fer the development, in the preparation of the projects manuscript. I owe to tim in every sence for providing one with the facilities, valuable guidance and constant help through out the course of investigation.

Sate:

NARENDRAPUR

ENVIRONMENTAL STUDIES

PROJECT TITLE:
Water Pollution and measures to Control it.

COLLEGE ROLL NO
DEPARTMENT
YEAR
: 2020
SIGNATURE
: SPartan Mandes,

Introduction:-
British poet W.H Auden Once noted, "Thousands have lived without love, not one without water?
John Todd Said, "Our liquid planet glows like a soft blue sapphire in the hard-edged darkness of space. There is nothing else like it in the solar systu. It is because of water?
Water is the essential element that manes life on earth possible. Without water there would be no life. Yet, while we all know water in crucial for life, we trash it anyway We usually take for granted. II flows from our taps When they are turned on and we remained complete Careless about that. Like good health we ignore water when we have it.
The roidespread problem of water pollution is jeopardizing our heath. Unsafe water kills more people each year than war and all other forms of violence Combined. Meanwhile Our drinkable water sources are finite i.e. less than 1% of the earth's freshwater is actually accessiable to us. Without taking amy positive action, the challeges will . Only increase by 2050, when globaldemand for freshwater is expected to be one -third than l it is now.

Still, we are not hopeless against the threat to clean water. To better understand the problem here we will discuss about an overviews of what water pollution. is, what causes it and how we can prevent it.

0. What is water Pollution?

\rightarrow Water pollution Occurs when harmful substance often chemicals or mieroong auisms - Contaminate a stream, riven lake, Ocean, aquifer, on any other water body, degarding water quality and rendering it toxic to humans and to the enviroment.

- TyPes of sources of rater Pollution:-
(1) Point source: When contamination occurs from a single. source and that source be readily identified as it has a definite place. Whore it entires water, then that source 4 is called as point source. Though, this pollution originates from a specific place, it can affect miles of waterways and Ocean.
examples- Municipal and industrial discharge pipes, waste water, discharged from a mamrifacturing unit, oil refinery etc. It can beform leaking septic systus and illegal dumping also. The EPA has act has set limits on what can be discharged by a facility dineactly into a body of water to regular point source. solution.

(2) Non-Point Sources: Non-Point source of Pollution is the opposite of point source pollution, with pollution released in a wide area. Non-Point source of pollution is harden to identity and harder to address. It is pollution that comes from or many Places all at once.
Example: Picture a city street during a thunderstorm. As rainwater flows overs a shalt, it wishes away drops of oil that leaked from cars engine, particles of tire rubber, dog waste and trash. The rim off goes into a storm sewers and ends up in a nearby river. so, Run off is a major cause of mon-point source solution.

Also, in urban area, people use waters from a definite watembody (Pond, river etc) in many Purpose and also various chemicals mixed with that waterbody from agricultural field with the run off of rain water. This is also akind of non-point source of Water pollution.
*) The pollution from non-point source also very difficult to regulate. Since there is no single, identifiable culprit.

- Different Categories of water pollution:
\rightarrow Ground water Pollution: Groundcoates is one of our least visible but most critical natural resources. With paciffall, it becomes groundwales as it socps deep into the earth, filling up rocks, crevices and porous space of an aquifer, which is an underground storehouse. of water.
Groundcoater gets polluted when contaminants such as fertilizers, pesticides, and waste leaching from land fills and septic systus, making their way into an aquifer making groundwater free of contaminants can be difficult to impossible as well as costhy.
\rightarrow Surface waler pollution: Surface wales Covers about 70% of the earth, filling our oceans, lakes, rivers and including all blue e bits in the world. Surface wales from fresh water surfaces other than sea accuunls for more than 60\% of water delivered to our hence.
Nutrient pollution that includes nitrates and phosphates - Which plants and animals meed to grow, causes major pollution in the -freshwater sources due to form warm and fertilizer runoff. Municipal and industrial waste discharge and also indivuiduali dumping directly into waterways Contribute their fair share of toxins.
As per the Enviromental protection agency of UIS, As per - nearly 50% of our rivers, streams one third of our lakes and ponds are polluted and unfit for swimming, fishing and drinking.
(3) Ocean water Pollution: 80% of Ocean pollution or marine pollution originates on land along the coast or far inland. Streams and rivers carry contaminants such as chemicals, nutrients and heavy metals that are carried from farms, factories and cities into our bays and estuaries and from there finally they reach the ocean.
Marine de bries, particularly plastic is blown away by the wind or washed away in storm via drains and sewars. Our seas sometimes get polluted ley leg and small oil spills and leaks and ane also soaking up carbon
(4) Transboundany: A boundary live Can't Contain wales Pollution on a Map. Trausboundany pollution happened When contaminated water from one country spilled into other countries water. It can result from a diaster like an oil spil or the slow, downriver eneop of industrial agricultral or municipal discharge.

- Causes and effects of water pollution:
(1) Sewage and domestic waste:-

Nearly 75% of water pollution is due to sew age and domestic. A mere 0.1% impurities make domestic wastes. Arm for human uses Sewage generally includes biodegradable pollutants like human faecal matter animal wastes and many dissolved organic compounds like -Carbohydrates, proteins, fats, urea etc. These pollutants Tuner natural processes are.
 rapidly decomposed.
Effect: In water organic wastes provided nutrition for many decomposers like bacteria. These breakdown the organic pant by using bulk of Oxygen and cause deficiency of oxygen in water that kills the fishes and other animals (aquatic). Anaerobic bacteria in Oxygen deficient produces foul Smelling gases. These give rise to many other pollutants like $\mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}$ etc. Organic sulphide and me thane also produced by those bacterias that makes the wales brownish and turbid.
(2) Industrial wastes and effluents: The indiviual industrial wastes and their effluents include poisonous materials like acids, alkalies, chrominum, etc, phenols, cyanides, insecticides, agricultu-- pal chemicals. hydrogen sulphides, heavy metals such as $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}$. and Hg .
\longrightarrow Effects:

- The water becomes toxic and deoxygenated so this Can't support aquatic life.
(2) Mercury (Hg) enters the food chain, kills, fish, and poisons the remaining fauna.

Mercury Causes minamata disease., people feeding on this aquatic forms develop numbness of limbs and lips, impairment in speech hearing and vision, meningitis and genetic disorders.
Oils deplete oxygen of water inhibit plankton growth and photosynthesis. Sea birds also harmful.

- Organic phosphates and nitrates enhance growth of algal blooms.
- Black fort diseases is caused by chronic exposure to As, Also, exposure of As may cause skin leispns, skin Cancan. lungs Cancer etc.
(3) Dumping:- Dumping of solid waters and litters in water bodies cause huge problems. Litters include glass, plastic, aluminium. styyroto an otc. Different things take different time to degrade in water.
effect: They effect the aquatic plants and animals.
(4) Mining activities: Mining is the process of crushing the rock and extracting coal and other minerals from the undergound. These element's, when extracted, in the raw form, contain harmful chemicals and Can increase the number of toxic. elements when mixed up with water, mining. activities exit a large amount of metal waste and sulphides from the rocks which is harmful to water.
4 effect: Release of toxic chemicals in water may cause health problems of aquatic animals as well as of human.
(5) Accidental leakage:- A ship carrying a large quantity of oil spil oil in sea if mot an accident.
\Rightarrow In 1967 large oil tanker Torney Caryan met an acceradentel and release -10000 ton crude oil in sea of southern England.
(6) Insecticides and Pesticides: Insecticides and biologically active chemicals that are used for pest control. These include D.D.T, B.H.C., CusO4 and aldrin etc. Aquatic microorganisms absorb them in fats and oils. Fish feeding on these zooplanktons and phytoplanktons rapidly spread in through other tropic levels.
Effects:
Biomagnification: Aquatic microorganisms absorb the insecticides in fats and oils. Fish feeding on these Zooplanktons and phytoplanktons further concentrate these pesticides still more. The increased accumulation of these toxic substance in the food chain at higher trophic level is called biological magnifica--Hon. Many species of predatory like comonomt's, hawks, and large fishes shown serious adverse effects from this accumulation.

$$
\begin{align*}
& \text { Water } \Rightarrow \text { Zooplankton } \Rightarrow \text { Small fish } \\
& \text { (DDT } \rightarrow 0.5 \text { Ppm). } \tag{VI}\\
& \text { (DDT } \rightarrow 0.003 \mathrm{ppm})(\text { DDT } \rightarrow 0.04 \mathrm{Ppm}) \quad \text { II. }
\end{align*}
$$

$$
\begin{aligned}
& \text { Fisheating birds } \Longleftarrow \text { Large. fish } \\
& \text { (DDT }=25 \text { PPm) } \\
& \text { (DDT } \rightarrow 2 \text { PPM) }
\end{aligned}
$$

(7) Sitution: Excessive agricultural and forestry practices Cause soil crosion (removal of top fertile soil) during heavy rain and through rain water soil particles mixed with rives on any other watesbodies.
Effects: The water becomes muddy which fails to support much plant growth due to poor light.
(8) Thermal pollution: Heated waste water from various powerplants and industies, which raise the Temp of water to a harmful level is called thermal pollution.
(9) Detergents and fartilizers: Detergents are washing material in water which cause soapiness. These form a film around organic waste.

Some of the fertilizers such as nitrates and phosphates are used in agriculture to increase the crops yield, reach into rivers and ponds through irrigation rainfall and damage, where they seriously disturb the aquatic
systm systm.
effects:
When such waters are used by animals, the nitrates of polluted wales become reduced to toxic nitrite in their body by intestial bacteria. The nitrites in the body combine With haemoglobin to course a serious disease called Mothacglobinemia or Blue baby syndrome
(10) Radioactivity: Nuclear energy Produced using nuclear fission on fusion. The element that is used in production of nuclear energy. v^{235} which is very toxic chemical, these rates are generally disposed in nearby waterbody of the nuclear reactor.
\triangle Effects: Nuclear wastes Can have serious enviroment hazards. If not disposed of Property. Release of nuclear wastes in fresh water will cause majon-water pollution and death of aquatic organism.
Few major accidents have already taken place in Russia and Japan.

Frevention measure of water pollution:
It is very important to prevent the polluting of water bodies and remove existing contaminants or reducing the concentration of these contaminants so as make it fit for desined use. So, mew will follow some of the ways of treating polluted water.
(1) Industrial waste water treatment: The paw swage is needed to be treated comecthy in a water treatment Plant before it can be Safety release into the enviroment. To reduce the toxicity of waste, it is passed through a number of chambers and chemical Process in wale treatment. Plant.

Industries that generate - wastewater with high Concentrations of organic matter, toxic polluants, need specialized treatment syst. e.g - air flotation systm.
(2) Erosion and sediment:

Firstly to step erosion and sadimantation of loose soil Particles we have to plant more and more less trees.
Specially aside waterbodies. that can prevent erosion of soil very much. Also, to stop Sedimaution of various hard particles in waterbodies from construction site, we may apply shit fence. also, we can use Separate sediment basins from water body.

(3) Retention basin for controlling urban runoff:

Effective eec control of urban run off involves rediving the velocity and flow of strom water, as well as recusing pollutant discharge. Nowdays, retention besins ane mainly used which are separated from general waterbodies. for dischange of turban runoff.
(4) Denitrification: When nitrates present in water get Converted into gas, it is known as denitrification. It is an ecological approch that prevents teaching of nitrates in the Soil.
(5) OZone waste water treatment: The O zone waste water treatment method has become very popular. In this method. an ozone generator breaks down the pollutants in water Ozone oxidises bacteria, organic material molds and other contaminants in water.
(6) Septic tanks: Septic tanks treat sewage right right at the place of the location where it originates instead of treating it in any faraway plant on sewage syst. This system is usually put to use at the indiviual building level. The sewage gets separated into solid and liquid components and treated.

- Conclusion? Water Pollution is mainly cause of our Undisciplined actions and irresponsibility Mainly. We humans are creating problems that cosequently we will also carny the burden of these problems. So, let's just realize how in important our 'mother nature. It' is ouse only source of living. Let's not destroy it now pollute it. Let us act for a change We w need and we should help, save and conserve our wales Which are very crucial to maintain the balance of mature. Absolutely, there ane many simple ways. in how we can help and com stop polluting waters.

ACKNOWLEDGEMENT
I convey my deep sense of grantitude to simp for Suggestion the way to find suitable for the development in, the preparation of the projeject worn. I owe to him the facilities valuable guidance and constant help through out the course of investigation. Student'

CERTIFICATE
Certified that we the project work submitted by Rt Sontauu Maudal is done under the Supervision of my honourable \sin as a part of curricular for the Partial fulfilment of the class - UG and semester.

NAME : SANTANU PRADHAN

COLLEGE ROLL NO : PHUG/205/19
DEPARTMENT : PHYSICS
YEAR : 2020
SIGNATURE : Santanu Pradhan

Project: Corona pandemic and role of common people to control it.
Introduction:
A panderaic is defined as "occuring over a wide geographic area and affecting an exceptionally high proportion of the population." The last pandemic reported in the world was the H, N, flue pandemic in 2009.

Source of this pandemic:
On 31 December 2019, a cluster of cases of pneumonia of unknown cause, in the arty of Wuhan, Hubei in China, was reported to the World Health Organisation. In January 2020 , a previously unknocon now virus was identified, subsequently named the 2019 norcl coronavirus, and samples obtained from cases and analysis of the virus' grencties indicated that this's was the cause of outbreak. This novel coronavirus was named Coronavirus Disease 2019 (COVID-19) by WHO in 2020 . The virus is referred to as SARS-COV-2 and the associated disease is COVPD-19.

Aims and Applications of this project:
Common people in World about more then $\frac{3}{4}$ th f - the total population. We as a responsible youth of the country, India, should participate in this battle against the zoonotic disease. Now, let's understand the robe of common people in this battle.

Actually, the " aims of this project is to create awarness among the people and teach them han to handle this pandemic situation wearing mask, P PPR, and washing hands with sanitizer repeatedly,
Structure of $\operatorname{COVID-19\text {virus:-}}$
It is a spherical or pbeomorphic enveloped particles containing single-stranded (positive-sense) RNA associated withe nucleoprotein within a capsid comprised of matrix protein. The envelope bears elub-shaped glycoprotein projections. Some eqronarirusesalso contain a hem agglutinin-esterase protein.

Coronaviruses possess the largest genomes among all known RNA viruses with $G+C$ contents varying from 32% to 43%. Variable numbers of small ORFs are present between the varius conserved genes (ORFLab; spike, envelope, membrane and nueleocapsid) and downstream to the nucleoeapsid gene in different coronavirus lineages. The viral genome contains distinctive features, including a unique M-terminal fragment within the spike protein. Genes for the major structural proteins in all coronaviruses occur in the $5^{\prime}-3^{\prime}$ order as S, E, M and N.

There are three or four viral proteins in the coronavirus membrane. The most abundant structural protein is the membrane (M) glycoprotein; it spans the membrane bilayen three times times, leaving a short NH_{2}-terminal domain outside the virus and a long COOH terminus inside the virion.

How does the infection occur? viruses are transmitted between animals humane. It has been determined that MERS-CoV was transmitted from dromedary camels to humans and SARS-COV from civet cats to humans. The source of SARS-CoV-2 (COVID) is yet to be determined, but investigations are ongoing to identify the zoonatic source to the outbreak.
G) Transmission of CoVID-19: Evidence is still emerging, but current information is indicating that human-to-human transmission if. securing. The routes of transmission of COVDD-19 remains unclear at present but evidence from otter coronaviruses and respiratory diseases indicates that the disease may spread through large respiratory droplets and dircef or indirect contact with infected secretions.

The incubation period of COVID-19 is currently understood to be between 2 to 14 days. This means that it a person remains well after 14 days after being in contact with person with confirmed COVID. 19 they are not infected.
(ii) Clinical Presentation: Typically Coronaviruses present with respiratory symptoms. Among those who will become infected, some will show no symptoms. Those who do develop symptoms may have amild to moderate, but self-limiting disease with symptoms similar to the seasonal Flu symptoms may include:
(1) Respiratory syato symptoms.
(2) Fever.
(3) Cough.
(4) Shortness of breath.
(5) Breathing difficulties.
(6) Fatigue.
(7) Sore throat.

A minority f group of people will present with more severe symptoms and will need to be hospitalised, most often with pneumonia, and in some instances, the illness can include ARDS, sepsis and septic shock.
Emergency warning signs where immediate medical attention should be sought include.
(1) Difficulty breathing or shortness of breath.
(2) Persistent pain or pressure in the chest.
(3) Mew confusion or inability to arouse.
(4) Bluish lis or face.

Corona Cases: In world- 235 countries are affected with corona viruses.
Confirmed cases: $38,348,719$
Reeprered : $28,354,860$
Deaths: $1,090,250$
In India:-
Confirmed cases: J,239,389
Recovered ;6,381,927
Deaths : 110,586
Diagnostiei process; A COVDD-19 diagnostic testing Wit has been developed and is available in clinical testing labs.

High-Risk Populations:
The virus that causes COVID-19 infects people of all ages. However, evidence to date suggests that two groups of people are at a higher risks of getting severe COVID-19 disease.
(1) Olden people (people over to years of age): This may be due to
i) Ageing is associated with a decline in immune function.
(ii) Higher risk of conmarbiditites (Diabates, Heart Disease, Lung Conditions, Cancer).
(iii) Residence/Location - Many older people lire in care homes or nursing facilities, where the disease can spread more rapidly.
(2) People with serious chronic illness such as:
(i) Diabetes.
(ii) Cardiovascular disease.
(iii) Chronic respiratory disease.
(iv) Cancer
(v) Hypertension.
(vi) Chronic liver disease.

Asyntomatic Infection

Mild Infection

Moderate Infection

Severe Infection

Critical Infection

Clinical presentation of patients with CoVID-19

Risk for pregnant women and newborns! The risk for adverse maternal and neonatal outcomes associated with COVID-19 is largely unknown, but medical experts suspect symptoms of COV2D-19, may be more severe in pregnant compared to non-pregnant women. This may be due to changes in their bodies and immune systems pregnant women can be badly affected by some respiratory infections. Women with COVID-19 can breastfeed and have close contact with their newbom, but they should diligently perform respiratory and hand hygiene. No evidence so far that babies hare active coronavirus transmitted from mothers.

Preventing Transmission:-
The WHO suggested the following basic preventative measures to protect against the new coronavirus.

1) Stay up to date with the latest information on the COVID-19 outbreak through WHO updates or your local and national public health authority.
2) Perform hand hygiene frequently with an alcohol-based hand rub if your hands are not visibly dirty or with soap and water if hands are dirty.
3) Avoid touching your eyes, nose and mouth.
4) Practice respiratory hygione by coughing or sneezing into a bent -elbow or tissue and then immedy immediately disposing of the tissue.
5) Wear a medical mask if you have respiratory symptoms and performing hand hygiene after disposing of the mask.
6) Maintain social distancing (approximately 2 meters) from individuals with respiratory symptoms.
7) If you have a fever, enough and difficulty breathing seek medical care.

Role of common people to control it:
Restoring to fear or panic, our members are providing a more impactiful response: informing themselves and helping otters. To join their efforts and do yoursart, follow three simple actions:

1) Stay informed and ensure others do too.:

As fear spreads faster then facts, inform yourself about the virus. Deepen your knowledge and point others to trusted information. Th's will go a long way to debunk myths and build resilience in your community.

Flattening the COVID-19 Case Curve

Number of cases

2) Take action to keep your community sate:

When you are young and healthy, your risk of developing severe illness is lower. So consider those in your community who are most valuer vulnerable, including older persons and persons with preexisting medical conditions (such as high blood pressure, heart disease, lung disease, cancer or diabetes). Do your best to support them.
3) Speak up to ensure your organisation does the right thing.

Organisations and employers play abig role in combating the virus. Encourage your office to take precautions: for example, ensure spaces and 'are clean and hygienic, promote regular hand-washinge, test remote working and communicate clearly to employees.
Role of youth to fight against $\operatorname{COVID-19:-~}$
Youth in India constitutes about more than $1 / 4$ th of total population. We as a responsible youth of this country should participate in this battle against the zoonotie disease. Now let's understands the role of youth in this battle. To name some of them from the canoes of history- Lenin, the Russian youth had a major contribution to the Russian revolution likewise Mazzini and Bhagat singh also contributed their rote for country. This battle can be won by helping the government in this time of edigeney. We can spread the right awarness in our Dost, Family, $x y z$, etc. $24^{*} 7$ whatsapp group with the right information about the Virus. Whatsapp/Social media groups always have as much as traffic on our roads. Let's spread the right music among your acquaintances during this situation.

Every religions activity has been on halt in lieu of corrna-virus outbreak. still if we see any of the gathering around. It's our res ponsibility to guide and report if required. The constitution of India, is the holy book for every Indian citizen and every order must be accepted as a commandent. We live in a democracy anat we have every right to put our thoughts on the table but this is the time to unite and stand with our government.

The outbreak of coronavirus has also affected the mental health of humans as everyone reacts differently to stressful situations. So in this hour of stress/anaicty let's spread the right knowledge, right bum ours, right videos and ensure them that we are going to win this batt se. To understand better ALt is not the Corona-rirus which is dangerous but it is the quiquick spread which is a threat." Let's us do our part and pordicipate in this batt se by staying at homie.

covid19 youth actions

Mark the actions you've taken to fight the coronavirus. Take a screenshot and share it with friends and family so others can learn how to help.

Com a chegada do Corondivfus no Brasil, ajuventude tem papel fundamental, tanto na disseminacho de informaçes verdadeiras, quanto na mudanga de comportamento.
Por 15so, esteja atento efique por dentro das ultimas orientaçes divulgadas pelo Gowerno Federal no site https://wwwigov.br/e no aplicativo Coronivirus.SUS" https:/www.gov.bu/pt-br/apps/coronavirussus.
Ter conhecimento sobre as formas de transmishlo, prevenclo e ptincipais sintomas tho essenciats no combate ao Coronavirus.

Dicas de prevenção:

Lavar as măos frequentemente com agua es sabonete por pelo menos 20 segundos, respeitando os 5 momentos de higienização. Se nato houver agua e sabonete,

- Usar um desinfetante para as máos a base de alcoof:
- Love as mãos com agua e sabão ou use dicool em gel
- Cubra o narize boca do espirrar ou tossir:
- Evite aglomeraçōes se estiver doente;
- Mantenha os amblentes bem ventilodos.
- Näo compartilhe objetos pessoais.

Quais säo os principais sintomas:

febre e tosse ou dificuldade para respirar.

Como ocorre a transmissdö

Ocoirte palo ar ou por contato perinal com
fecrebdes contaminydan, comb;

Goticulas de sallva

Espirro

Tosse

Cotarro

Contato persoal proalma comp toque bulapertan de mila

Continto com obletes ed mptrificles oentirminadais Heguldo de contits com beck nariz on olhas.

Seja responsável

Entảo seja responsåvel, näo divulgue fake news, mas sim conteúdos de

Tenha consciencia de que ume atitude sua afeta a vida de muitas pestoas. Essa é a hora de agir com solidariedade e de pensar no próximo, para que juntos possamos enfrentar essa epidemia.

Conclusion:
The Coronavirus, a Pandemic has made us realize that we all are convected and this entire world is a family. Although connected, medical experts suggested social distancing as one of the perfect solution to fight against the evil. Our honourable Prime Minister-Narendra Nodi Ti indicated how COVID. 19 chain can be splintered with the 21 days country lock-down. But to flatten the curve of COVID-19, the lock down must be respected and accepted by 130 crore Indians altogether.

ENVIRONMENTAL STUDIES
PROJECT TITLE:
$=5 .:$ Nitrogen cycle and its importance for living beings:=

NAME : SANTANU SINGH
COLLEGE ROLL NO : PHUG / 138 / 19
DEPARTMENT: PHYSICS
YEAR : 2020
SIGNATURE
: Santana Singh

$:$ Index $:=$	
subject $:=$	
1. Certificate	
2. Introduction	01
3. Nitrogen is key to life	$02-03$
4. Nitrogen cycle	04
5. Nitrogen Fixation	$05-06$
6. Assimilation	$07-09$
7. Ammonification	$09-10$
8. Nitrification	
9. Denitrification	11
10. Nitrogen cycle in Marine	12
Ecosystem	14
11. Unbalancing the N2 cycle	$15-17$
12. Importance	18
13. Conclusion	
14. Acknowledgement	$19-20$

2.

二: Introduction :=
Nitrogen is one of the primary nutrients critical for the survival of all living organisms. It is a necessary component of many biomolecules, including proteins, DNA, and chlorophyll. Although nitrogen is very abundant in the atmosphere as dinitrogen gas (N_{2}), it is largely inaccessible in this form to most organisms, making nitrogen a scarce resource and often limiting primary productivity in many ecosystems. Only when nitrogen is Converted from dinitrogen gas into ammonia $\left(\mathrm{NH}_{3}\right)$ does it become available to primary producers, such as plants.
In addition to N_{2} and NH_{3}, nitrogen exists in many different forms including both in organic (Ex-nitrate, ammonia) and organic (Ex-nucleic acids) forms. Thus, nitrogen undergoes

Figure: Transformations in the nitrogen cycle.
3.
many different transformations in the ecosystem, changing from one form the another as organisms use it for growth and in some cases, energy. The major transformations of nitrogen are nitrogen fixation, nitrification, denitrification amammox, and ammonification. The transformation of nitrogen into its many oxidation states is key to productivity in the biosphere and is highly dependent on the activities of a diverse assemblage of microorganisms, such as bacteria, archaca and fungi.
$=$: Nitrogen is Key to Life: $=$
Nitrogen is a key element in the nucleic acids. DNA and RNA which are the most important of all biological molecules and crucial for all living things. DNA carries the genetic information, which means the instructions for how to makeup a life form. When plants donot get enough nitrogen, they are unable to produce amino acids. Without amino acids, plants cannot make the special proteins that the plant cells need to grow. Without enough nitrogen, plant growth is affected negatively. wi th too much nitrogen, plants produce exes biomass or organic matter, such as stalks and leaves, but not enough root structure. In extreme cases, plants with very high levels of nitrogen absorbed from soils can poison farm animals that eat them

Fig:- Nitrogen cycle in Nature.

- Nitrogen Cycle:=

The nitrogen cycle is a repeating cycle of processes during which nitrogen moves through both living and non-living things: the atmosphere, Soil, water, plants, animals and bacteria. In onder to move through the different parts of the cycle, nitrogen must changes forms. In the atmosphere, nitrogen exists as a gas (N_{2}), but in the soils it exists as nitrogen oxide, NO, and nitrogen dioxide, NO_{2} and when used as a fertilizer, can be found in other forms, such as ammonia, NH_{3}, which can be processed even further into a different fertilizer, ammonium nitrate or $\mathrm{NH}_{4} \mathrm{NO}_{3}$.
6.

There are five states in the nitrogen cycle:

1. Fixation or Volatilization
2. Assimilation
3. Ammonification
4. Nitrification
5. Denitrification.

In this process, microbes in the soil turn nitrogen gas $\left(N_{2}\right)$ into volatile ammonia $\left(\mathrm{NH}_{3}\right)$, so the fixation process is called volatilization. Leaching is where certain forms of nitrogen becomes dissolved in water and leaks out of the soil, potentially polluting waterways.

Fig: - Nitrogen Fixation and Denitrification and Ammonefication.

- Nitrogen Fixation:=

In this state, nitrogen moves from the atmosphere into the soil. Earth's atorosphere contains a huge pool of nitrogen gas $\left(N_{2}\right)$. But this nitrogen is unavailable to plants, because the gaseous form cannot be used directly by plants without undergoing a transformation. To be used by plants, the N_{2} must be transformed through a process called nitrogen fixation. Fixation Converts nitrogen in the atmosphere into forms that plants Can absorb through their root Systems.
A small amount of nitrogen can be fixed when lightning provides the energy needed for N_{2} to react with $0 \times y$ gen, producing nitrogen oxide, NO, and nitrogen dioxide NO_{2}. These forms of nitrogen
8.
then enter soils through rain or show. Nitrogen can also be fixed through the industrial process that creates fertilizer. This form of fixing occurs under high heat and pressure during which atmospheric nitrogen and hydrogen are combined to form ammonia (NH_{3}) which may then be processed further, to produce ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$, a form of nitrogen that can be added to soils and used by plants.
Most nitrogen fixation occurs naturally in the soil, by bacteria. Some bacteria attach to plant roots and have a symbiotic relationship with the plant. The bacteria get energy through photosynthesis and in return they fix nitrogen in to a form the plant needs. The fixed nitrogen is then carried to other parts of the plant and is used to

Fig: - Stages of the Nitrogen cycle
form plant tissues, so the plant can grow. other bacteria live freely in soils or water and can fix nitrogen without this symbiotic relationship. These bacteria can also create forms of nitrogen that canbe used by organisms.

- Assimilation:

Plants can absorb nitrate or ammonium from the soil by their root hairs. If nitrate is absorbed, it is first reduced to nitrite ions and then ammonium ions for incorporation into amino-acids, nucleic acids and Chlorophyll. In plants that have a symbiotic relationship with rhizobia, some nitrogen is assimilated in the form of ammonium ions directly from the nodules. It is now known that there is more complex cyclic of
amino acids between Rhizobia bacteroids and plants. The plant provides amino acids to the bacteroids so ammonia assimilation is not required and the bacteroids pass amino acids back to the plant, thus forming an interdependent relationship. While many animals, fungi, and other heterrobropic organims obtain nitrogen by ingestion of amino acids, nucleotides, and other small organic molecules other heterotroph are able to utilize inorganic Compounds, such as ammonium as sole N sources. Utilization of various N sources is carefully regulated in all organisms.
11.
$=$: Ammonification :=
When a plant or animal dies or an animal expels waste, the initial form of nitrogen is organic. Bacteria or fungi convert the organic nitrogen within the remains back into ammonium $\left(\mathrm{NH}_{4}^{+}\right)$, a process called ammonification or mineralization.
Enzymes involved are:

1. Gs: Gin synthetase (cytosolic \& Plastic)
2. GOGAT: Glu 2-oxoglutarate amino trans ferrase
(Ferredoxin \& NADH dependent)
3. GDH: Glu Dehydrogenase:
i) minor tole in ammonium assimilation
11) Important in amino acid catabolism.
12.

- Nitrification:=

During nitrification the ammonia in the soils, produced during mineralization, is converted into compounds called nitrites, $\mathrm{NO}_{2}-$ and nitrates, NO_{3}^{Θ}. Nitrates can be used by plants and animals that Consume the plants. Some bacteria in the soil can turn ammonia into nitrites. Although nitrite is not usable by planets and animals directly, other bacteria can change nitrites into nitrates - a form that usable by plants and animals. This reaction provides energy for the bacteria engaged in this process. The bacteria that we are talking about are called nitrosomonas and nitrobacter. Nitrobacter turns nitrites into nitrates; nitroso monas transform ammonia to nitrites. Both kind of bacteria can act only in the presence of O_{2}.

- Denitrification: =

Denitrification is the reduction of nitrates back into nitrogen gas (N_{2}) completing the nitrogen cycle. This process is performed by bacterial species such as pseudomonas and parracoccus, under anaerobic conditions. They use the nitrate as an electron acceptor in the place of oxygen during respiration. These facultatively anaerobic bateria can also live in aerobic conditions. Denitrification happens in anaerobic conditions e.g waterlogged soils. The denitrifying bacteria use nitrates in the soil to carry out respiration and consequently produce nitrogen gas, which is inert and unavailable to plants.

Fig: - schematic diagram of the N_{2} cycle in the ocean.
14.
$=$:Nitrogen cycle in Marine Ecosystem:=
The process of the nitrogen cycle occurs in the same manner in the marine ecosystem as in the terrestrial ecosystem. The only difference is that it is carried out by marine bacteria.
The nitrogen-containing compounds that fall into the ocean as sediments get Compressed over long periods and form sedimentary rock. Due to the geological uplift, these sedimentary rocks move to land. Initially, it was not known that these nitrogen containing sedimentary rocks are an essential source of nitrogen. But, recent researches have proved that the nitrogen from these rocks is related into the plants due to the weathering of rocks.
:Unbalancing the Nitrogen Cycle: $=$
It takes a great deal of energy to convert atmospheric nitrogen into biologically useful forms, ecosystems have evolved to get by on fairly modest amounts of organic nitrogen. From forest fires to farming to burning fossil fuels, human activities have been altering the natural nitrogen cycle for centuries. Human practices that add reactive nitrogen to ecosystems can change ecological balances. Farming, for example, is a
relatively nitrogen intensive activity. relatively nitrogen intensive activity.
crops deplete nitrogen in the soil. Crops deplete nitrogen in the soil, therefore many farmers use man made fertilizers in order to augment nitrogen levels. Un fortunately in its nitrate form, nitrogen is extremely soluble and is readily leached from the soils into ground water reservoirs which feed into lakes and streams. In heavily
16.
agricultural areas, fertilizers are the primary source of nitrogen pollution. where livestock is raised, animal wastes that are mich in nitrogen - if not properly managedcan also be carried by rainwater into nearby bodies of water.
In areas with large human populations, most of the reactive nitrogen that is introduced into. the environment by human activity Comes from food and food processing As with other animals, human wastes are nitrogen rich. This is especially the case with the large amounts of food protein that most americans consume.

There are a variety of Consequences of nitrogen pollution. A major source of reactive nitrogen is atmospherec deposition which comes largely from transportation emissions, as a
nitrogen oxides (NOX) are realsased through the exhaust. These emissions are a key ingredient in the formation of ground level ozone (smog). Another form of reactive nitrogen - nitric acid $\left(\mathrm{HNO}_{3}\right)$ - is an important ingredient in the creation of acid rain.
One of the most serious consequences of nitrogen pollution is over-nutrition or eutrophication, of aquatic ecosystems. Nitrogen leaches into the soil, and eventually into standing bodies of water, causing an unnaturally high level of nitrogen in the water. This eutrophication harms aquatic ecosystems by fueling excessive algae growth which over shadows the water surface and deprives other aquatic organisms of necessary sunlight. when the algae dies, the oxygen consumed in the decomposition process can further deprive other aquatic onganims of needed oxygen. In extreme cases, eutrophication can result in the total die- off of fish in laves

Fig:- Importance of N2 cycle in Nature and also our ecosystem.

- Importance $:=$

Importance of the nitrogen eycle are as follows:

1. Helps plants to synthesise chlorophyll from the nitrogen compounds.
2. Helps in converting inert nitrogen gas into a usable from for the plants through the biochemical process. 3. In the process of ammonification, the bacteria help in decomposing the animal and plant matter, which indirectly helps to clean up the environment.
3. Nitrates and nitrites are released into the soil, which helps in enriching the soil, Nae with necessary nutrients required for cultivation.
4. Nitrogen is an integral component of the cell and it formons many crucial Compounds and important biomolecules.
5.

=: Conclusion: $=$

1. Nitrogen is abundant in the atmosphere but it is unusable to plants or animals unless it is converted into nitrogen Compounds.
2. Nitrogen - fixing bacteria play a crucial role in fixing the atmospheric nitrogen into nitrogen compounds that can be used by the plants.
3. The plants absorb the usable nitrogen compounds from the soil through their roots. Then, these nitrogen compounds are used for the production of proteins and other compounds in the cell.
4. Animals assimilate nitrogen by Consuming these plants or other animals that contain nitrogen. Humans Consume proteins from these plants and animals and then the nitrogen assimilates into our system.
5. During the final stages of the nitrogen cycle, bacteria and fungi help de compose orragnic matter, where the nitrogenous compounds get dissolved into the soil which is again used by the plants.
6. Some bacteria then convert these nitrogenous. compounds in the soil and true it into nitrogen gas. Eventually it goes back to the atmosphere.
7. These sets of processes repeat Continuously and thus maintain the percentage of nitrogen in the atmosphere.
=:ACKNOWLEDGEMENT: =
I would like to express my special thanks of gratitude to my teacher Prof. Narrayan Chandra Mail who gave me the golden opportunity to do this wonderful project on Nitrogen cycle and its importance for living beings, which also helped me in doing a lot of Research and i came to know about so many new things.
I would also luke to extend my gratitude to the Principal Maharaja Swami Shastrajnananda and Coordinator of Examinations Department Br. Vikas Maharaj for providing me with all the facility that was required. secondly i would also like to thank my parents and friends who helped me a lot in finishing this project within the limited time.
Date:

$$
01 \cdot 11 \cdot 2020
$$

Santana Sing
BSD $1^{\text {st }} y r$, Physics
":The End $:=$

ENVIRONMENTAL STUDIES
PROJECT TITLE:
$=5 .:$ Nitrogen cycle and its importance for living beings:=

NAME : SANTANU SINGH
COLLEGE ROLL NO : PHUG / 138 / 19
DEPARTMENT: PHYSICS
YEAR : 2020
SIGNATURE
: Santana Singh

$:$ Index $:=$	
subject $:=$	
1. Certificate	
2. Introduction	01
3. Nitrogen is key to life	$02-03$
4. Nitrogen cycle	04
5. Nitrogen Fixation	$05-06$
6. Assimilation	$07-09$
7. Ammonification	$09-10$
8. Nitrification	
9. Denitrification	11
10. Nitrogen cycle in Marine	12
Ecosystem	14
11. Unbalancing the N2 cycle	$15-17$
12. Importance	18
13. Conclusion	
14. Acknowledgement	$19-20$

2.

二: Introduction :=
Nitrogen is one of the primary nutrients critical for the survival of all living organisms. It is a necessary component of many biomolecules, including proteins, DNA, and chlorophyll. Although nitrogen is very abundant in the atmosphere as dinitrogen gas (N_{2}), it is largely inaccessible in this form to most organisms, making nitrogen a scarce resource and often limiting primary productivity in many ecosystems. Only when nitrogen is Converted from dinitrogen gas into ammonia $\left(\mathrm{NH}_{3}\right)$ does it become available to primary producers, such as plants.
In addition to N_{2} and NH_{3}, nitrogen exists in many different forms including both in organic (Ex-nitrate, ammonia) and organic (Ex-nucleic acids) forms. Thus, nitrogen undergoes

Figure: Transformations in the nitrogen cycle.
3.
many different transformations in the ecosystem, changing from one form the another as organisms use it for growth and in some cases, energy. The major transformations of nitrogen are nitrogen fixation, nitrification, denitrification amammox, and ammonification. The transformation of nitrogen into its many oxidation states is key to productivity in the biosphere and is highly dependent on the activities of a diverse assemblage of microorganisms, such as bacteria, archaca and fungi.
$=$: Nitrogen is Key to Life: $=$
Nitrogen is a key element in the nucleic acids. DNA and RNA which are the most important of all biological molecules and crucial for all living things. DNA carries the genetic information, which means the instructions for how to makeup a life form. When plants donot get enough nitrogen, they are unable to produce amino acids. Without amino acids, plants cannot make the special proteins that the plant cells need to grow. Without enough nitrogen, plant growth is affected negatively. wi th too much nitrogen, plants produce exes biomass or organic matter, such as stalks and leaves, but not enough root structure. In extreme cases, plants with very high levels of nitrogen absorbed from soils can poison farm animals that eat them

Fig:- Nitrogen cycle in Nature.

- Nitrogen Cycle:=

The nitrogen cycle is a repeating cycle of processes during which nitrogen moves through both living and non-living things: the atmosphere, Soil, water, plants, animals and bacteria. In onder to move through the different parts of the cycle, nitrogen must changes forms. In the atmosphere, nitrogen exists as a gas (N_{2}), but in the soils it exists as nitrogen oxide, NO, and nitrogen dioxide, NO_{2} and when used as a fertilizer, can be found in other forms, such as ammonia, NH_{3}, which can be processed even further into a different fertilizer, ammonium nitrate or $\mathrm{NH}_{4} \mathrm{NO}_{3}$.
6.

There are five states in the nitrogen cycle:

1. Fixation or Volatilization
2. Assimilation
3. Ammonification
4. Nitrification
5. Denitrification.

In this process, microbes in the soil turn nitrogen gas $\left(N_{2}\right)$ into volatile ammonia $\left(\mathrm{NH}_{3}\right)$, so the fixation process is called volatilization. Leaching is where certain forms of nitrogen becomes dissolved in water and leaks out of the soil, potentially polluting waterways.

Fig: - Nitrogen Fixation and Denitrification and Ammonefication.

- Nitrogen Fixation:=

In this state, nitrogen moves from the atmosphere into the soil. Earth's atorosphere contains a huge pool of nitrogen gas $\left(N_{2}\right)$. But this nitrogen is unavailable to plants, because the gaseous form cannot be used directly by plants without undergoing a transformation. To be used by plants, the N_{2} must be transformed through a process called nitrogen fixation. Fixation Converts nitrogen in the atmosphere into forms that plants Can absorb through their root Systems.
A small amount of nitrogen can be fixed when lightning provides the energy needed for N_{2} to react with $0 \times y$ gen, producing nitrogen oxide, NO, and nitrogen dioxide NO_{2}. These forms of nitrogen
8.
then enter soils through rain or show. Nitrogen can also be fixed through the industrial process that creates fertilizer. This form of fixing occurs under high heat and pressure during which atmospheric nitrogen and hydrogen are combined to form ammonia (NH_{3}) which may then be processed further, to produce ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$, a form of nitrogen that can be added to soils and used by plants.
Most nitrogen fixation occurs naturally in the soil, by bacteria. Some bacteria attach to plant roots and have a symbiotic relationship with the plant. The bacteria get energy through photosynthesis and in return they fix nitrogen in to a form the plant needs. The fixed nitrogen is then carried to other parts of the plant and is used to

Fig: - Stages of the Nitrogen cycle
form plant tissues, so the plant can grow. other bacteria live freely in soils or water and can fix nitrogen without this symbiotic relationship. These bacteria can also create forms of nitrogen that canbe used by organisms.

- Assimilation:

Plants can absorb nitrate or ammonium from the soil by their root hairs. If nitrate is absorbed, it is first reduced to nitrite ions and then ammonium ions for incorporation into amino-acids, nucleic acids and Chlorophyll. In plants that have a symbiotic relationship with rhizobia, some nitrogen is assimilated in the form of ammonium ions directly from the nodules. It is now known that there is more complex cyclic of
amino acids between Rhizobia bacteroids and plants. The plant provides amino acids to the bacteroids so ammonia assimilation is not required and the bacteroids pass amino acids back to the plant, thus forming an interdependent relationship. While many animals, fungi, and other heterrobropic organims obtain nitrogen by ingestion of amino acids, nucleotides, and other small organic molecules other heterotroph are able to utilize inorganic Compounds, such as ammonium as sole N sources. Utilization of various N sources is carefully regulated in all organisms.
11.
$=$: Ammonification :=
When a plant or animal dies or an animal expels waste, the initial form of nitrogen is organic. Bacteria or fungi convert the organic nitrogen within the remains back into ammonium $\left(\mathrm{NH}_{4}^{+}\right)$, a process called ammonification or mineralization.
Enzymes involved are:

1. Gs: Gin synthetase (cytosolic \& Plastic)
2. GOGAT: Glu 2-oxoglutarate amino trans ferrase
(Ferredoxin \& NADH dependent)
3. GDH: Glu Dehydrogenase:
i) minor tole in ammonium assimilation
11) Important in amino acid catabolism.
12.

- Nitrification:=

During nitrification the ammonia in the soils, produced during mineralization, is converted into compounds called nitrites, $\mathrm{NO}_{2}-$ and nitrates, NO_{3}^{Θ}. Nitrates can be used by plants and animals that Consume the plants. Some bacteria in the soil can turn ammonia into nitrites. Although nitrite is not usable by planets and animals directly, other bacteria can change nitrites into nitrates - a form that usable by plants and animals. This reaction provides energy for the bacteria engaged in this process. The bacteria that we are talking about are called nitrosomonas and nitrobacter. Nitrobacter turns nitrites into nitrates; nitroso monas transform ammonia to nitrites. Both kind of bacteria can act only in the presence of O_{2}.

- Denitrification: =

Denitrification is the reduction of nitrates back into nitrogen gas (N_{2}) completing the nitrogen cycle. This process is performed by bacterial species such as pseudomonas and parracoccus, under anaerobic conditions. They use the nitrate as an electron acceptor in the place of oxygen during respiration. These facultatively anaerobic bateria can also live in aerobic conditions. Denitrification happens in anaerobic conditions e.g waterlogged soils. The denitrifying bacteria use nitrates in the soil to carry out respiration and consequently produce nitrogen gas, which is inert and unavailable to plants.

Fig: - schematic diagram of the N_{2} cycle in the ocean.
14.
$=$:Nitrogen cycle in Marine Ecosystem:=
The process of the nitrogen cycle occurs in the same manner in the marine ecosystem as in the terrestrial ecosystem. The only difference is that it is carried out by marine bacteria.
The nitrogen-containing compounds that fall into the ocean as sediments get Compressed over long periods and form sedimentary rock. Due to the geological uplift, these sedimentary rocks move to land. Initially, it was not known that these nitrogen containing sedimentary rocks are an essential source of nitrogen. But, recent researches have proved that the nitrogen from these rocks is related into the plants due to the weathering of rocks.
:Unbalancing the Nitrogen Cycle: $=$
It takes a great deal of energy to convert atmospheric nitrogen into biologically useful forms, ecosystems have evolved to get by on fairly modest amounts of organic nitrogen. From forest fires to farming to burning fossil fuels, human activities have been altering the natural nitrogen cycle for centuries. Human practices that add reactive nitrogen to ecosystems can change ecological balances. Farming, for example, is a
relatively nitrogen intensive activity. relatively nitrogen intensive activity.
crops deplete nitrogen in the soil. Crops deplete nitrogen in the soil, therefore many farmers use man made fertilizers in order to augment nitrogen levels. Un fortunately in its nitrate form, nitrogen is extremely soluble and is readily leached from the soils into ground water reservoirs which feed into lakes and streams. In heavily
16.
agricultural areas, fertilizers are the primary source of nitrogen pollution. where livestock is raised, animal wastes that are mich in nitrogen - if not properly managedcan also be carried by rainwater into nearby bodies of water.
In areas with large human populations, most of the reactive nitrogen that is introduced into. the environment by human activity Comes from food and food processing As with other animals, human wastes are nitrogen rich. This is especially the case with the large amounts of food protein that most americans consume.

There are a variety of Consequences of nitrogen pollution. A major source of reactive nitrogen is atmospherec deposition which comes largely from transportation emissions, as a
nitrogen oxides (NOX) are realsased through the exhaust. These emissions are a key ingredient in the formation of ground level ozone (smog). Another form of reactive nitrogen - nitric acid $\left(\mathrm{HNO}_{3}\right)$ - is an important ingredient in the creation of acid rain.
One of the most serious consequences of nitrogen pollution is over-nutrition or eutrophication, of aquatic ecosystems. Nitrogen leaches into the soil, and eventually into standing bodies of water, causing an unnaturally high level of nitrogen in the water. This eutrophication harms aquatic ecosystems by fueling excessive algae growth which over shadows the water surface and deprives other aquatic organisms of necessary sunlight. when the algae dies, the oxygen consumed in the decomposition process can further deprive other aquatic onganims of needed oxygen. In extreme cases, eutrophication can result in the total die- off of fish in laves

Fig:- Importance of N2 cycle in Nature and also our ecosystem.

- Importance $:=$

Importance of the nitrogen eycle are as follows:

1. Helps plants to synthesise chlorophyll from the nitrogen compounds.
2. Helps in converting inert nitrogen gas into a usable from for the plants through the biochemical process. 3. In the process of ammonification, the bacteria help in decomposing the animal and plant matter, which indirectly helps to clean up the environment.
3. Nitrates and nitrites are released into the soil, which helps in enriching the soil, Nae with necessary nutrients required for cultivation.
4. Nitrogen is an integral component of the cell and it formons many crucial Compounds and important biomolecules.
5.

=: Conclusion: $=$

1. Nitrogen is abundant in the atmosphere but it is unusable to plants or animals unless it is converted into nitrogen Compounds.
2. Nitrogen - fixing bacteria play a crucial role in fixing the atmospheric nitrogen into nitrogen compounds that can be used by the plants.
3. The plants absorb the usable nitrogen compounds from the soil through their roots. Then, these nitrogen compounds are used for the production of proteins and other compounds in the cell.
4. Animals assimilate nitrogen by Consuming these plants or other animals that contain nitrogen. Humans Consume proteins from these plants and animals and then the nitrogen assimilates into our system.
5. During the final stages of the nitrogen cycle, bacteria and fungi help de compose orragnic matter, where the nitrogenous compounds get dissolved into the soil which is again used by the plants.
6. Some bacteria then convert these nitrogenous. compounds in the soil and true it into nitrogen gas. Eventually it goes back to the atmosphere.
7. These sets of processes repeat Continuously and thus maintain the percentage of nitrogen in the atmosphere.
=:ACKNOWLEDGEMENT: =
I would like to express my special thanks of gratitude to my teacher Prof. Narrayan Chandra Mail who gave me the golden opportunity to do this wonderful project on Nitrogen cycle and its importance for living beings, which also helped me in doing a lot of Research and i came to know about so many new things.
I would also luke to extend my gratitude to the Principal Maharaja Swami Shastrajnananda and Coordinator of Examinations Department Br. Vikas Maharaj for providing me with all the facility that was required. secondly i would also like to thank my parents and friends who helped me a lot in finishing this project within the limited time.
Date:

$$
01 \cdot 11 \cdot 2020
$$

Santana Sing
BSD $1^{\text {st }} y r$, Physics
":The End $:=$

NARENDRAPUR

ENVIRONMENTAL STUDIES

PROJECT TITLE:
"Corona Pandemic and role of common people to control it"

NAME
: Saptarshi Dash
COLLEGE ROLL NO : PHUG/239/19
DEPARTMENT : Physics
YEAR
: 2020
SIGNATURE : Saptarshi Dash

1. Abstract:

The coronavirus disease 19 (CovID-19) is a highly trans-- mittable and pathogenic viral infection caused by severe acute respiratory syndrome coronavirus 2 (SAR S-co -2), which emerged in Wuhan, China and spread around the world. Genomic analysis revealed that SARS-COV-2 is phylogenetically related to severe acute respiratory syndrome-lixe (SARS-like) bat viruses, therefore bats could be the possible primaryreservoius The intermediate source of origin and transfer to humans is not known, however, the rapid human to human transfer has been confirmed widely. There is no clinically approved. antiviral drug or vaccine available to be used against COV10-19. However, few broad-spectrum antiviral drugs have been evaluated against cov10-19 in clinical trials, resulted in dinical recovery. In the current review, we summarize and comparatively analyze the emergence and pathogenic city of covID -19, infection and previous human coronaviruses severe acute respiratory syndrome coronavirus (SARS -CV) and middle east respiratory syndrome coronavirus (MERS - GoV). we also discuss the approaches for developing effective vaccines and therapeutic combinations to cope with this viral outbreak.

Graphical abstract:

2. Introduction:

Coronaviruses belong to the coronaviridae family in the Nidovirales order. Corona represents crown-like spikes on the outer surface of the virus; thus, it was named as a coronavirus. Coronaviruses are minute in size (65-125 $n m$ is diameter) and contain a single-stranded RNA as a nucleic material, size ranging from 26 to 32 Kbs in length. The subgroups of coronaviruses family are alpha (α), beta (β), gamma (γ) and defta (δ) coronaviruses. The severe acute respiratory syndrome coronavirus (SARS-COV), H5N1. influenza A, HIN 1 2009 and middle East respiratory syndrom coronavirus (MERS - Gov) cause acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) which leads to pulmonary failure and result in fatality. These viruses were thought to infect only animals until the world witnessed a severe acute respiratory syndrome (SARS) outbreak caused by SARS - COV, 2002 in Guang dong, China. Only a decade later, another pathogenic coronavirus, known as Middle East respiratory syndrome coronavirus (MERs - COV) caused an endemic in Middle Eastern countries.

Fig- 1 structure of respiratory syndrome causing human coronavirus

Recently at the end of 2019, wuhan an emerging business hub of china experienced an outbreak of a novel coronavirus that killed more than eighteen hundred and infected over seventy
thousand individuals within the first fifty. days of the epidemic. This virus was reported to be a member of the β group of coronaviruses. The novel virus was named as Wuhan coronavirus or 2019 novel coronavirus $(2019-n \operatorname{Cov})$ by the Chinese researchers. The International committee on Taxonomy of Viruses (ICTV) named the virus as SARS-COV-2 and the disease as COVID-19. In the history, SRAS - $\operatorname{Cov}(2003)$ infected 8093 individuals with mortality rate of 9%, across 26 countries in the world, on the other hand, novel corona virus (2019) infected 53.3 Million people with mortality rate of 2.9%, across 217 countries worldwide. It shows that the transmission rate of $S A R S-C O V-2$ is higher than SRAS - COV and the reason could be the genetic recombination event at s protein in the RBD region of SARS-COV-2 may have enhanced its transmission ability. In this project we will discuss the origination and rote of common per-- ple to control it briefly. We further discuss the associated infectiousness and biological features of SARS and MERS with a special focus on COVID-19.

Comparative analysis of emergence and spreading of Coronaviruses:

In 2003, the chinese population was infected with a virus causing Severe Acute Respiratory Syndrome (SARS) in Guangdong Province. The virus was confirmed as a member of the Beta. Coronavirus subgroup and was named SARS - COV. The infected patients exhibited prev--monia symptoms with a diffused alveolar injury which lead to acute respiratory distress syndrome (ARDS). SARS initially emerged in Guangdong, Chin a and then spread rapidly around the globe with more than 8000 infected persons and 776 deceases. A decade later in 2012, a couple
of Saudi Arabian nationals were diagonesed to be infected with another coronavirus. The detected virus was confirmed as a member of coronaviruses and named as the Middle East Respiratory Syndrome coronavirus (MERS - COV). The world Health Organization reported that MERS-coronavirus infected more than 2428 individuals and 838 deaths. MERS-COV is a member betr-coronavirus subgroup and phylogenetically diverse from other human- $C_{0} V$. The infection of MERS-COV. initiates from a mild upper respiratory injury while prog-- ression leads to severe respiratory disease, Similar to SARS -coronavirus, patients infected with MERS-coronavinus suffer pneumonia a, followed by $A R D S$ and renal frilure.

Recently, by the end of 2019, WHO was informed by the chinese government about several cases of pneumonia with unfamiliar etiology. The outbreak was initiated from the Hunan seafood market in Wuhan city of china and rapidly infected more than 50 peoples. The live animals are frequently sold at the Hunan seafood market such as bats, frogs, snakes, birds, marmots and rabbits, on 12 january 2020, the National Health commission of China released further details about the epidemic, suggested viral preum--onia. From the sequence -based analysis of is olates from the patients, the virus was identified as a novel coronavirus. Moreover, the genetic sequence was also provided for the diagnosis of viral infection. Initially, it was sugs-- rested that the patients infected with Wuhan coronavirus induced pneumonia in Chin a may hare visited the seafood market where live animals were sold or may. have used infected animals or birds as a source of food. However, fur the investigations revealed that some individuals contracted the infection even with no record of visiting the seafood market. These observation ind-- cated a human to the human spreading capability of
this virus, which was subsequently reported in more than 200 countries of the world. The hum an to human sprea - ding of the virus occurs due to close contact with an infected person, exposed to coughing, sneezing, Respire-- tory droplets or aerosols. These aero sols can penetrate the human body (lungs) via inhalation through the nose or mouth.

Fig. 2. The key reservoirs. and mode of tranomission of coronaviruses l suspected reservoirs of SARS -COV-2 are red encircled); only α and β coronaviruses have the ability to infect humans, the consumption of infected animal as a source of food is the major cause of animal to Luman transmission of the virus and due to lose contact with an infected person, the virus is fur lither transmitted to healthy persons. Dotted black arrow shows the possibility. of viral transfer from bat where-- as the solid black arrow represent the confirmed transfer.
Primary reservoirs and hosts of coronaviruses:
The source of origination and transmission are important to be determined in order to develop preventive stra-- tegies to contain the infection. In the case of SARS-CoV,
the researchers initially focused on racon dogs and palm civets as a key reservoir of infection. However, only the samples isolated from the civets at the food market showed positive results for viral RN A detection, suggesting that the civet palm might be secondary hosts. In 2001 the samples were isolated from the healthy persons of Hongkons and the molecular assessment showed 2.5\% frequency rate of anti-bodies against SARS - coronavirus. These indications suggested that SARS-coronarirus maybe circulating in humans before causing the outbreak in 2003. Later on, Rhinolophus bats. were also found to have anti -SARS - COV antibodies suggesting the bats as a source of viral Replication. The Middle East respiratory syndrome (MERS) coronavirus first emerged in 2012 in Saudi Arabia. MERS - Cormarinus also per--tains to beta-coronarirus and having camels as a zornotic source of or primary Lost. In a recent study MERS-coronavirus was also defected in Pipis tr ellus and Perimyotis bats, proffering the bats are the key Lost and transmitting medium of the virus.. Initially a group of researchers suggested snakes be the possible Lost, however, after genomic similarity fin di--ngs of novel coronavirus with SARS -like bat viruses supported the statement that not snakes but only bats could be the key reservoirs. Further analysis of homologous recombination revealed that receptor binding spike glycoprotein of novel coronavirus is developed from a SARS - CoV ($\operatorname{CoVZ} \times 21$ or CoV C 45) and a yet unknown Beta-COV. Nonethe less, to eradicate the virus, more work is required to be done in the aspects of the identification of the intermediate zoonotic source that caused the transmission of the viruisto humans.

Table -1 Comperative analysis of biological features of SARS-COV and SARS-COV-2

Key features and entry mechanism of human coronavirus:
All coronaviruses contain specific genes in ORF1 downstream regions that encode proteins for viral replication, nucleo-

- seapsid and spikes formation. The glycoprotein spikes on the outer surface of coronaviruses are responsible for the attachment and entry of the virus to host cells. The raptor
-binding domain (RBD) is loosely attached among virus, therefore, the virus may infect multiple hosts. Other conona-- viruses mostly recognize aminopeptidazes or carbohydra--ter as a key receptor for entry to human cells while SARSCOV and MERS-CoV recognize 2×0 peptidases. The entry mechanism of a coronavirus depends upon cellular protea--se which include, human airway trypsin-like protease (HAT), cathepsins and transmembrane protease serine 2 (TMPRSS2) that split the spike protein and establish further penetration changes. MERS-coronavirus employs. dipeptidyl peptidase 4 (DPP4), while HCOV-NL63 and SARS-coronavirus require angiotensin -converting engyme 2 (AC E2) as a key receptor. SARS-CoV-2 possesses the typical coronavirus structure with spike protein and also expressed other polyproteins, nucleo-- proteins and membrane protemis such as RNA polymerase, 3-clyynotrypsin-like protease, helicase, glycoprotein, and accessory proteins. The spice protein of SARS - Cor 2 contains a $3-D$ structure in the RBD region to maintain the van der walls forces. The 394 ghtamine sesidue in the RBD region of SARS-COV-2 is recognized boy the Critical lysine 31 residue on the human ACE 2 refeptor. The entire mechanism of palto genicity of SARS -GV-2, from attuchonent to replication is well mentioned below.

fig-3. The life cycle of SARS - CoV-2 in host cells; begins its life cycle when s protein binds to the cellular receptor ACE 2. After receptor binding, the conformation change in the s protein facilitates viral envelope fusion with the cell membrane through the endosomal pathway. Then SARS-Cor-2 reteases. RNA into the host cells. Genome RNA is translated into viral replicase polyprotems pp/a. and lab, which are then cleaved into sm all products boy viral proteinases. The polymerase produces a series of subgenomic MRNAS by discontinuous tr inscription and finally translated into relevant viral proteins. viral proteins and genome RNA are subsequently asoemb. -led into virions in the $E R$ and Golgi and then transported via vesicles and released out of the cell. ACE 2, angioten--sin-converting enzyme 2; ER, endoplasmic reticulum; ER-Golgi intermediate compartment.

Genomic Variations in $S A R S-C O V-2$:
The genome of the SARS - CoV-2 has been reported over 80% identical to the previous human coronavirus (SARS-like bat Cov). The structural protein are encoded by the four structural genes, including spike (S), envelope (E),. membrane (M) and nucleolapsid (N) genes, the or 1 ab is the largest gene in SARS-CoV-2 which encodes the Pp1ab protein and 15 nsps . The orff a gene encodes for pp1a protein which also eontains 10 nsps . According to the evolutionary tree, SARS-Cor-2 hies close to the group of SARS-coronaviruses. Recent studies have indicated notable variations in SARS - $C_{0} V$ and SARS-CoV-2 such as the abspence of 8 a protein and fluctuation in the number of amino acids in 8 b and $3 C$ protein in SARS-Cov-2. It is also reported that spike glycoprotein of the Wuhan coronavirus is modified via homologous recombination.

The spike glycoprotein of $S A R S-C O V-2$ is the mixture of bat SARS-COV and not known. β-l oN. In a fluroscent study, it was confirmed that the SARS-COV-2 also uses the name ACE 2 (angiotensin-converting enzyme 2) cell receptor and mechanism for the entry to host cell which is previously used by the $S A R S-C O V$. The single NSO1T mutation in SARS-CoV-2's spike protein may hare significantly enhanced it's binding affinity for $A C E 2$

Fig -4
Fg-4. Betacoronaviruses genome organization; the Betricoronavirus for human (SARS -cor -2 , SARS $-C_{0} V$ and MARS $-C_{0} V$) genome comprises of the 5^{\prime} - untranslated region $\left(5^{\prime}-U T R\right)$, open reading frame (or) $1 a / b$ (green box) encoding non structural protein ($n s p$) for replication, structural proteins including spike (blue box), envelop (maroon box), membrane (pink box), and nucleocapsid (cyan box) proteins, accessory proteins. (light grey boxes) such as orf $3,6,7 a, 7 b, 8$ and $9 b$ in the S AR - CON - 2 genome, and the 3^{\prime}-untranslated region (3^{\prime}-U TR). The doted underlined in red are the protein which shows key variation between SARS-cor-2 and SARS-coV. The length of $n s p s$ and orfs are not drawn in scale.
fig -5
Fig - 5. Phylogenetic tree of coronaviruses (content in red is the latest addition of newly emerged SARS - cor -2 and wSFMP When $-\mathrm{Hu}-1$ is used as a reference in the tree); the phylogenetic tree showing the relationship of Wuhan-Hu-1 (denoted as red) to selected coronaviruses is based on nucleotide sequences of the complete genome, The viruses are grouped into four genera (prototype shown): AIS.Alphacononavirus (sky blue), Betacoron-- virus (pirix), Gammacoronavirus (green) and Deltacoronavirus (lightbue), and subgroup clusters are labeled as $1 a$ and $1 b$ for the Alphacononavirus. and $2 a, 2 b, 2 c$, and $2 d$ for the Betacoronavirus. This tree is based on the published trees of Coronaviri-- nae and reconstructed with sequences of the complete. RNA - dependent RNA polymerase -coding region of the representative novel coronaviruses (maximum likelihood method using MEG $A \cdot 7.2$ scoff--ware). severe acute respiratory syndrome coron-- virus (SARS-coV); SARS-related coronavirus (SARS Sr-CoV), MERS-CoV; porcine centric dian he bi-- mus (PEDV), Wuhan seafood market pneumonia (Wuhan - Hu-1). Bat LOVRAT G13 showed high sequence identity to SARS-COV-2.

The major obstacle in research progress:
Animal models play a vital role to uncover the mechanisms of viral pathogenicity from the entrance to the transmission and designing therapentic strategies. Previously, to examine the replication of SARS-CoV, various animal models were used which showed the symptoms of severe infection. In contrast to SARS-COV, no NERS-COV pathogenesis was obsewed in small animals. Mice are not vulnerable to infection by MERS coronavirus due to the non-compatibility of the DPPA receptor. As the entire genome of the 2019-novel cor on avirus is more than 80% similar to the previous. Human SARS - like bat Co V, previously used animal models for $S A R S-C_{0} V=2$ can be entilited to study the infections pathogenicity of SARS - $\operatorname{CoV}-2$. The human ACE 2 receptor is recognized by both $S A R S$ and Novel coronavi ruses. Concl--usively, TALEN or CRISPR-mediated genetically modified hamsters or other small animals can be unitized for the study of the pathogenicity of novel CoN. SARS - Co V has been reported to replicate and cause severe disease in Rats (F344), where the sequence analysis revealed a mutation at spike glycoprotein. Thus, it could be ano - Her suitable option to develop spice glycoprotein targeting therapentics against novel coronaviruses. Recently, mice models and clinical isolates were used to develop any therapentic strategy against SARS-Cor-2 induced corID-19. In a similar study, artificial intell. - ene prediction was used to investigate the inhibitory role of the drug against SARS - COV - 2 , SARS - GOV - 2 infected patients were also used to conduct randomized clinical trials

It is now worldwide collaborate the design a suitable model and investigate the in vivo mechanisms associ-- ated with pathogenesis of SARS-COV-2.

ROLE OF COMMON PEOPLE TO CONTAIN OR CHECK THE
SPREAD OF COVID-19
There is no vaccine available against COVID-19, But researchers from different countries and government of coin-- tries worldwide are trying to get invent a vaccine of that. Initially, interferons-a nebulization; broad -spectrum. antibiotic, and anti-viral drugs were used to reduce the viral load, however, only rem desivir has shown promising impact against the virus. Remdesivir only and in combination with chloroquine or interferon beta significantly blocked the SARS - COV-2 replication and patients were declared as clinically recovered.

However as Vaccine is not discovered yet so awareness among the people and obeying the government policies are the only remedy here.

MEASURES TO BE TAKEN:

1. The world Health Organisation h as warned that alcohol consumption could increase health risks for a person who becomes infected with the virus so people hare to avoid drinking alcohol.
2. As elderly patients of COVID-19 are the most vulnera.

- ble so we have to take measures and policies that can help them from going outside home for work and then they can stay inside room that will help them from CoVID-19 infection.

3. Avoid touching eyes, nose and mouth:

Our hands touch door handles, keyboards, taps and numerous other surfaces, so the virus could. easily be picked up this wary. Rubbing tired eyes or touching nose or mouth could transfer the virus from our hands to body so we have to avoid it.

COV1D-19 can be transmitted by people with the virus coughing or sneezing, releasing ting contr-- minated droplets into the air, putting anyone wilton range in danger of inhaling them. These dropletsan travel more than a metre from the infected person allowing them to settle on any surfices ready to be transferred to anyone that touches the surface.

The virus can live on some surfaces for several days. Data from the 2003 SARS outbreak, which was a similar illness to the latest coronarinus showed the virus could contaminate plastered walls for up to a day and a half, plastic and stainless steel for 72 hours n and glass for 96 hours, So it's likely the mobile phone, tablet or computer screen you ar e reading this on could harbour coviD-19 for up to four days, and be transferred to anyone touching the screen.

Adopting good hyjiene is one of the most effective weapons to slow or prevent the virus spreading Here are six things you can do to protect ourselvesmentim-
(1) Wash our hands regularly:
cleaning hands thoroughly and of ten using plenty of soap and water or an alcohol-based hand rub to kill any virus on hands. Scrub for at least 20 seconds, maxing sure clean fingers, thumbs and palms. will ensure people's safety.
(5) Practise respiratory hygiene:

If we cough or sneeze, we have to use a tissue and throw it in the trash afterwards. If we don't have a tissue, cough into the crook of your arm instead of using hand. If possible, avoid coughing or sneezing near other other people that will stop spreading the virus.
(6) Maintain Social Distancing:

We have to be aware of people around us apdkeep our distance from anyone coughing or sneezing. Stay at least 1 metre away to prevent inhaling the small liquid droplets sprayed by coughs and sneezes.

(7) If any symptoms develop, seek medical care carly: stay at home is the advice if you feel unwell and if you develop a fever, cough or difficulty breathing seek
medical attention. Call in advance of your visit, and follow the advice of your local health prove-- der - they will h are the most up-to-date infor-- matron on the situation in your area.
(6) Stay informed:

Accurate information about COVID-19 and its spread is essential. But beware, because there is a lot of mis information, scaremongers and fake news floating around on social media that can hamper efforts to contain the virm.

The latest information is available by visiting trusted sources like WHO's information page.

Critically abide by the lock down and Unlock stages impoguidelines imposed by government of India as we are citizen of India and also to instals the 'Arogya Setu' app for updated inform nation..

Conclusion:
last but not the least we have to say that as vaccine is not available so awareness and and the people specially youth to protect the society from this virus is highly solicited.

Certificate
This is to certify that Saptarshi Dash, B. SC first year student (Roll no - PHUG/239/19) of Ramakrishna Mission Residential College (Autonomous), Narendrapur, Depart--ment of Physics has done the project on
"Corona pandemic and role of common people to control it"
under the supervision and guidance of Prof. Narayan Chandra Marty, Department of Environmental studies, RKMRC, Narendrapur.

Saptarshi Dash
Date - 15/11/2020

NARENDRAPUR

ENVIRONMENTAL STUDIES

PROJECT TITLE:

AIR POLLUTION IN CITIES AND MEASURES TO CONTROL IT

NAME : Saptarsi Tarafder
COLLEGE ROLL NO : PHUG/137/19
DEPARTMENT : Physics
YEAR
: 2020
SIGNATURE
Suptansi fargeldex

A ir pollution in cities and measures Ap control
P-:
From the sogining of human civilization man striated to exploit the nature. In twenty first century massive nobanization not only making disaster to the nature but creating major issues Ar the man also. In cities these pollutions are intensified. specially air pollution. Air pollution is creating major health issues which is a moor problem.

Ais pollution:
Air pollution is the presence of substances in the atmosphere that are harmful to the health of. humans and other living beings or caused Damage fAo the climate or different objects.
Air pollutants in the cities and sonnies:
As cities art filled with industries. carts and people. It is the sore of almost all kind of pollutants.

Different pollutant and sources are:
(1) Garbo-di-oxidd $\left(\mathrm{cO}_{2}\right)$:
CO_{2} is the main gree bouse
gas which causes global warming It reduces the 2, in air. It mainly proances ty cars and industries due to braining of. fasids fuel.

1) Suffer oxides $\left(s_{x}\right)$:

Son in the air converted to HSO_{4} in moist. It causes acid rain. It is also poisons. It is mainly proAnces by fossil fuel. cars and petrochemical inAnstriles are common sonace of it.
iii) Nitrogen Oxides $\left(\mathrm{Na}_{x}\right)$;
NO_{2} is also a common green
house jos and poisonow A00. Ft is mainly produced by cons.
م) Carbonmonoxide (cO):
CI, is very poisonous gas which
may cause Berth intuking in large amount $\bigcirc_{\text {Its }}$ also form by busing fossil fuel.

air pollution by cars

1) Volatile Organic Compound:

Voc are well known out Arox air pollutant. They ane very organic compound generally used as solvent eg -benzene isoperele, terpenes, methanol etc. They are very poisonous gas. It is seen that they cans cancel.
CH_{4} is also a Voc which is no poisonous but having a sermon green hanse effectMainly house holds, ears and chemical industries, paint are primary since of Nos.
vi) Suspended partionlate matter:

Nowadays spp is mayor pollutant in urban areas. It is the suspended dust particle, asbestos, ash and other harinful particles suspend in air as a a aerosol.
vi) others:

EFC, phosphine, smoke of ate are also ais pollutant.

air pollution by industries

Carse of pollution in Air in cities:

1) Cities have very high population densities.
2) large no. of cans and industries operators in small area.
iv) less regulation of population sources. iv) Very poor free and land ratio..

Effects of air pollution:
There many adverse effects of air pollution which are following:-
y) Smog
smoke + fog $=$ smog smog is a intense
effect of ais pollution. Man- mode smog is derived from coal combustion, emission, vehicular. industrial emission ans photochemical reaction.

Dee Ar photochemical reaction amoy is composed of ground level ozone $\left(O_{0}\right)$. PAN (y)roacytyle nitrate). Smog is a major problem. ir cities like Los Angles. New Delhi, Wahine te.

Smog

Before and after smog

Smog continues to harm Sunn health
ir cities. It is harmful for senior citizens, children ans people with head and lng conditions such as emphysema, bronchitis and asthema. Smog is possible for an estimated 9500 premature death. in year 2016 alone. It causes cancer.

1) Heat Island:

Dee to high concentration of greeentorse and low tree cities are now heated above the normal temparetures. This increases storm and rain wind. iii) health effects:

1) Mentality:

World health Organization estimated in 2014 H L every year air pollution eases the premature death of -some y million people worldwide.
11) CatAioracenlan Disease:

A 200% riview of evidence found
that ambient air pollution exposure fond that ambient
air pollution expense is a risk factor correlating with increased total mortalify from anrdiounsklar defects.
iii) Lng disease:

Research has demonstrated increased risk of developing asthma and copt from increased exposure to Irffic-related air pollution. Additionally air pollution has beer associated with increased hospitalization and mortality form asthman and COPD.
iv) Cancer:

A review f evidence regarding whether
ambient air pollution exposure is a risk factor for cancer in 200% found solid data to conclude that longterm exposure to spp and vice.ineases overall risk of cancer by 6%.
v) Affect children and other animals:

Que to pollution children are
highly affected. Many disease and Death happen every yean Alto airs pollution. Little animals and

ASTHMATIC LUNG

Normal amount of mucus

asthma

birds are also affecting cansing the ecological Sisbalanie.
4) Economic effects:

Air pollution costs the world econnyy
5 trillion per year as a result of proAnctivity losses and Aegradel quality of life. According to a steady by the world bawl.

Measures to control Air pollution:
Vamions pollution control technologies and strategies are available to reduce air pillition. Whish are following:-
a) land use planing:

Using land in proper manner, increase forest areas in cities, removing heavy in Anstsity and regulation population density rance air pollution.

1) Resnation of fossil. fuel:

Various efforts are taken to reduce fossil fuel. Tr reAnce air pollution in cities we need to increase the umber of silas cells.
c) Plartation of trices:

Trees are natural contriver f air pollution. sereal like sunke plant, exica palme aiglonima et. rit only absurbe CO_{2} but also absorbe
Vocs.

1) Control Acvices :

The following itans are comminty used as pillution eontrol devices in induatries and trarsplantation. If thin sevices on te used me can redme the level of pollution.

Particulate Curtrol:

* Mechavical collectors (dust eyclones,
cyclome) et. muHticyclone) etr.
* Elentristatic prexipitators (ESP) is a
particnlate antrol Sevice clan air nsing indnced clectrostatic charge.
\# Daghonses are Aesigned Ar hande heary
Jnat loodsa dust colterters cinsists of a bouler. Anst filters, a filter leaning system which removes dut.
\# Particulate scrubbery is a wed scrinbler which remove gases like $\mathrm{SO}_{x}, \mathrm{NO}$ and $\mathrm{CO}, \mathrm{CO}_{2}$ as well ag SPM.

Baghouse

Scrubber:
Sambler system are a diverse gropp of air pillution cintrol Sevices that can be nsed to nemove sime partionlates and gases from industrial exhars) streand. thene we rerenal types of scrubber:
Buffle spray scrubber
cyclonie spray sernbber?
Fyector ventury scribber
Mechruically aiAed scrubber
spray tower
wet scinbber.
Nox contriol:
There are sifferent tools Ao control Nox emission. Which are?

Low NO_{x} burwers
selectine nin-(atabytic rednction
selective catalytic rednetion
NO_{2} scrubbers
catalytic converiter.

So, contrul:
$\mathrm{SO}_{2}+4 \mathrm{O}=\mathrm{HSH}_{4}$ aC SO_{2} becane HSO_{4}
as SO_{2} becanse HSO_{4} in mist wet scrubber is useful.
e) Contrilling vohide exmission:

Veliele emission can be contall by using new engives, biofrel. We olso need to incrieases electric cars. Odd-Even systim emploged in Dehi is also a very gaad technique.
f) Public Awameness:

Prblic awrareness is the key to stop any kinst of ervisornental pollution. Because humanis the main canse of pillution, If perple are educatel to etop prillution then it is juat a matter of avarduess
g) Grernnental and Gerpolitical stops:

Government of many countries as well
as ON have taken stepe to reduve air pollution. If the lawsuits are effectively implenented then necan easity reluce ais pollution in cities.

Conclusion:
Cities are to economic life lines of -any century. Edventional. economic, industrial power hisses are majorly located in cities but air pollution causing lInts of-Aamage. So he heed to reduce air pollution as much as soon as possible to improve ont lives.

Acknowledgement:
I cancer my deep sense of gratitude to sir for giving me the option to write on "Air pollution in cities" project. I am also very thankful to wikjpedion and National Geographic community in He interned for serving me with gigantic data bases.

Date: 15th November, 2020
Saptarsi fard f der. signature of He student

Certificate
Certified that the project work submitted by Saptansi farafter is done under the supervision of my honourable sir as a part of-curriculam. for the partial fulfilment of the cussuK $2 w d$ Semester.

Date

NARENDRAPUR

ENVIRONMENTAL STUDIES

PROJECT TITLE:

AIR POLLUTION IN CITIES AND MEASURES TO CONTROL IT

NAME : Saptarsi Tarafder
COLLEGE ROLL NO : PHUG/137/19
DEPARTMENT : Physics
YEAR
: 2020
SIGNATURE
Suptansi fargeldex

A ir pollution in cities and measures Ap control
P-:
From the sogining of human civilization man striated to exploit the nature. In twenty first century massive nobanization not only making disaster to the nature but creating major issues Ar the man also. In cities these pollutions are intensified. specially air pollution. Air pollution is creating major health issues which is a moor problem.

Ais pollution:
Air pollution is the presence of substances in the atmosphere that are harmful to the health of. humans and other living beings or caused Damage fAo the climate or different objects.
Air pollutants in the cities and sonnies:
As cities art filled with industries. carts and people. It is the sore of almost all kind of pollutants.

Different pollutant and sources are:
(1) Garbo-di-oxidd $\left(\mathrm{cO}_{2}\right)$:
CO_{2} is the main gree bouse
gas which causes global warming It reduces the 2, in air. It mainly proances ty cars and industries due to braining of. fasids fuel.

1) Suffer oxides $\left(s_{x}\right)$:

Son in the air converted to HSO_{4} in moist. It causes acid rain. It is also poisons. It is mainly proAnces by fossil fuel. cars and petrochemical inAnstriles are common sonace of it.
iii) Nitrogen Oxides $\left(\mathrm{Na}_{x}\right)$;
NO_{2} is also a common green
house jos and poisonow A00. Ft is mainly produced by cons.
م) Carbonmonoxide (cO):
CI, is very poisonous gas which
may cause Berth intuking in large amount $\bigcirc_{\text {Its }}$ also form by busing fossil fuel.

air pollution by cars

1) Volatile Organic Compound:

Voc are well known out Arox air pollutant. They ane very organic compound generally used as solvent eg -benzene isoperele, terpenes, methanol etc. They are very poisonous gas. It is seen that they cans cancel.
CH_{4} is also a Voc which is no poisonous but having a sermon green hanse effectMainly house holds, ears and chemical industries, paint are primary since of Nos.
vi) Suspended partionlate matter:

Nowadays spp is mayor pollutant in urban areas. It is the suspended dust particle, asbestos, ash and other harinful particles suspend in air as a a aerosol.
vi) others:

EFC, phosphine, smoke of ate are also ais pollutant.

air pollution by industries

Carse of pollution in Air in cities:

1) Cities have very high population densities.
2) large no. of cans and industries operators in small area.
iv) less regulation of population sources. iv) Very poor free and land ratio..

Effects of air pollution:
There many adverse effects of air pollution which are following:-
y) Smog
smoke + fog $=$ smog smog is a intense
effect of ais pollution. Man- mode smog is derived from coal combustion, emission, vehicular. industrial emission ans photochemical reaction.

Dee Ar photochemical reaction amoy is composed of ground level ozone $\left(O_{0}\right)$. PAN (y)roacytyle nitrate). Smog is a major problem. ir cities like Los Angles. New Delhi, Wahine te.

Smog

Before and after smog

Smog continues to harm Sunn health
ir cities. It is harmful for senior citizens, children ans people with head and lng conditions such as emphysema, bronchitis and asthema. Smog is possible for an estimated 9500 premature death. in year 2016 alone. It causes cancer.

1) Heat Island:

Dee to high concentration of greeentorse and low tree cities are now heated above the normal temparetures. This increases storm and rain wind. iii) health effects:

1) Mentality:

World health Organization estimated in 2014 H L every year air pollution eases the premature death of -some y million people worldwide.
11) CatAioracenlan Disease:

A 200% riview of evidence found
that ambient air pollution exposure fond that ambient
air pollution expense is a risk factor correlating with increased total mortalify from anrdiounsklar defects.
iii) Lng disease:

Research has demonstrated increased risk of developing asthma and copt from increased exposure to Irffic-related air pollution. Additionally air pollution has beer associated with increased hospitalization and mortality form asthman and COPD.
iv) Cancer:

A review f evidence regarding whether
ambient air pollution exposure is a risk factor for cancer in 200% found solid data to conclude that longterm exposure to spp and vice.ineases overall risk of cancer by 6%.
v) Affect children and other animals:

Que to pollution children are
highly affected. Many disease and Death happen every yean Alto airs pollution. Little animals and

ASTHMATIC LUNG

Normal amount of mucus

asthma

birds are also affecting cansing the ecological Sisbalanie.
4) Economic effects:

Air pollution costs the world econnyy
5 trillion per year as a result of proAnctivity losses and Aegradel quality of life. According to a steady by the world bawl.

Measures to control Air pollution:
Vamions pollution control technologies and strategies are available to reduce air pillition. Whish are following:-
a) land use planing:

Using land in proper manner, increase forest areas in cities, removing heavy in Anstsity and regulation population density rance air pollution.

1) Resnation of fossil. fuel:

Various efforts are taken to reduce fossil fuel. Tr reAnce air pollution in cities we need to increase the umber of silas cells.
c) Plartation of trices:

Trees are natural contriver f air pollution. sereal like sunke plant, exica palme aiglonima et. rit only absurbe CO_{2} but also absorbe
Vocs.

1) Control Acvices :

The following itans are comminty used as pillution eontrol devices in induatries and trarsplantation. If thin sevices on te used me can redme the level of pollution.

Particulate Curtrol:

* Mechavical collectors (dust eyclones,
cyclome) et. muHticyclone) etr.
* Elentristatic prexipitators (ESP) is a
particnlate antrol Sevice clan air nsing indnced clectrostatic charge.
\# Daghonses are Aesigned Ar hande heary
Jnat loodsa dust colterters cinsists of a bouler. Anst filters, a filter leaning system which removes dut.
\# Particulate scrubbery is a wed scrinbler which remove gases like $\mathrm{SO}_{x}, \mathrm{NO}$ and $\mathrm{CO}, \mathrm{CO}_{2}$ as well ag SPM.

Baghouse

Scrubber:
Sambler system are a diverse gropp of air pillution cintrol Sevices that can be nsed to nemove sime partionlates and gases from industrial exhars) streand. thene we rerenal types of scrubber:
Buffle spray scrubber
cyclonie spray sernbber?
Fyector ventury scribber
Mechruically aiAed scrubber
spray tower
wet scinbber.
Nox contriol:
There are sifferent tools Ao control Nox emission. Which are?

Low NO_{x} burwers
selectine nin-(atabytic rednction
selective catalytic rednetion
NO_{2} scrubbers
catalytic converiter.

So, contrul:
$\mathrm{SO}_{2}+4 \mathrm{O}=\mathrm{HSH}_{4}$ aC SO_{2} becane HSO_{4}
as SO_{2} becanse HSO_{4} in mist wet scrubber is useful.
e) Contrilling vohide exmission:

Veliele emission can be contall by using new engives, biofrel. We olso need to incrieases electric cars. Odd-Even systim emploged in Dehi is also a very gaad technique.
f) Public Awameness:

Prblic awrareness is the key to stop any kinst of ervisornental pollution. Because humanis the main canse of pillution, If perple are educatel to etop prillution then it is juat a matter of avarduess
g) Grernnental and Gerpolitical stops:

Government of many countries as well
as ON have taken stepe to reduve air pollution. If the lawsuits are effectively implenented then necan easity reluce ais pollution in cities.

Conclusion:
Cities are to economic life lines of -any century. Edventional. economic, industrial power hisses are majorly located in cities but air pollution causing lInts of-Aamage. So he heed to reduce air pollution as much as soon as possible to improve ont lives.

Acknowledgement:
I cancer my deep sense of gratitude to sir for giving me the option to write on "Air pollution in cities" project. I am also very thankful to wikjpedion and National Geographic community in He interned for serving me with gigantic data bases.

Date: 15th November, 2020
Saptarsi fard f der. signature of He student

Certificate
Certified that the project work submitted by Saptansi farafter is done under the supervision of my honourable sir as a part of-curriculam. for the partial fulfilment of the cussuK $2 w d$ Semester.

Date

RAMAKRISHNA MISSION RESIDENTIAL COLLEGE NARENDRAPUR.

ENVIRONMENTAL STUDIES
Project Title:
Nitrogen Cycle and it's importance for living beings
NAME : SATTIK BISWAS

COLLEGE ROLL NO: STUG/168/19
DEPARTMENT: Statistics

YEAR $\quad: \quad 2020$
Signature
: Batik Biswar
CONTENTS

- What is Nitrogen Cycle
- Stages
- In Marine Ecosystem
- Importance
- Conclusion
- Acknowledgement
- Corlificale

Nitrogen cycle Defination
"Nitrogen Cycle is a biogeochemical process which transform the inert nitrogen present in the atmosphere to a more usable form of living organisms."

Furthermore, nitrogen is a key nutrient elements for plants. However, the abundant nitrogen in the atmosphere cannot be used directly by plants or animals. Read on to explore how, the Nitrogen cycle makes usable nitrogen available to plants and other living organisms.
What is Nitrogen Cycle?
Nitrogen cycle is a biogeochemical process through which nitrogen is converted into many forms, consecutively passing from the atmosphere to the soil to organism and back into the atmosphere.

It involves several process such as nitrogen fixation, nitrification, denitrification, decay and putrefaction.

The nitrogen gas exists in both organic and inorganic forms. Organic nitrogen exists in living organism, and they get passed through the food chain by the consumption of other living organisms.

Inorganic forms of nitrogen are found in abundance in the atmosphere. The nitrogen is made available to plants by symbiotic bacteria stich can convert the wert nitrogen into a usable form - such a nitrites and nitrates.

Nitrogen undergoes various types of transformation to maintain a balance in the ecosystem. Furthermore, this process extends to various biomes, with the marine nitrogen cycle being, one of the most complicated biogeochemical cycles.

Stages of Nitrogen cyole
Process of Nitrogen cycle consists of the following steps - Nitrogen fixation, Nitrification Assimilation. Ammonifacalion and Denitrification. The processes take place in several stages ard are explained below:

Nitrogen fixation
It is the initial step of the nitrogen cycle. Here, Atmospheric nitrogen (N2) which is primarily available in an inert form, is converted into the usable form - ammonia $\left(\mathrm{NH}_{3}\right)$.

During the process of Nitrogen fixation, the inert form of nitrogen gas is deposited into soils form the atmosphere and surface waters, mainly through precipitation. Later, the nitrogen undergoes a set of changes, in which two nitrogen aton get separated and combine with hydrogen to form ammonia $\left(\mathrm{NH}_{\mathrm{q}}{ }^{+}\right.$)

The entire process of Nitrogen fixation is completed by symbiotic bacteria abluch are known as Diazotrophs. Azotobactor and Rhizobium also have a major role in this precess. These bacteria consist of a nitrogenase enzyme which has the capability to combine gaseous nitrogen with hydrogen to form ammonia. .

Nitrogen fixation can occur either by the atmospheric fixation whirls involves lightening or industrial fixation by manufacturing ammonia under light fomperolitre and piensuere condition. This can alan be fixed thorough man made processes, primarily industrial processes that create ammonia and nitrogenrich fertilisers.

- Types of Nitrogen Fixation

1. Atmospheric fixation: A natiral phenomenon where the energy of lightning breaks the nitrogen into nitrogen oxides and is then used by plants.
2. Industrial nitrogen fixation: Is a man made alternative that aids in nitrogen fixation by the use of ammonia. Ammonia is produced by the direct combination of nitrogen and hydrogen and Later, it is converted into various fertilisers such as urea.
3. Biological nitrogen fixation: We already know -twat nitrogen is not usable directly from the ain for plants and animals. Bacteria like Rhizobium and blue-greas algae transform the unusable form of nitrogen into other compounds that are more readily usable. These nitrogen compounds get fixed in the soil by these
microbes.

Nitrification
In this process, the ammonia is converted into nitrate by the presence of bacteria in the soil. Nitrites are formed by the oxidation of Ammonia with the help of Nitrosomorras bacterium species. Later, the produced nitrites are converted into nitrates by Nitrobacter. This conversion is very important as ammonia gas is toxic for plants.

This reaction involved in the process of Nitrification is as follows:

$$
\begin{aligned}
2 \mathrm{NH}_{1}^{+}+3 \mathrm{O}_{2} & \rightarrow 2 \mathrm{NO}_{2}^{-}+4 \mathrm{H}^{+}+2 \mathrm{H}_{2} \mathrm{O} \\
2 \mathrm{NO}_{2}^{-}+\mathrm{O}_{2} & \rightarrow 2 \mathrm{NO}_{3}^{-}
\end{aligned}
$$

Assimilation
Primary producers - plonks lakes in The nitrogen compounds from the soil with the help of their roots, which are available in the form of ammonia, nitrite ions, nitrate ions or ammonium ions. and are used in the formation of the plant and anirnal proteins. This way, it enters the food web when the primary consumers eat the plants.

Ammonification
When plants or animals die, the nitrogen present in the organic matter is released back into the soil. The decomposer namely bacteria or fungi present in the soil, convert the organic matter back into ammonium.

This process of decomposition produces ammonia, which is further used for other biological processes.

Denitrification
Denitrification is the process in which the nitrogen compounds makes its way back into the atrrosptere by convert ling nitrate (NO_{3}^{-}) into gaseous nitrogen (N). This process of the nitrogen cycle is the final stages and occurs in the absence of oxygen. Denitrification is carried out by the denitrifying bacterial species - Clostridium and Pserdomonas, which will process nitrate to gain oxygen and gives out free nitrogen gas as a byproduct.

Nitrogen cycle in Marine Ecosystem
The process of the nitrogen cycle occurs in the same manner in the marine ecosystem as in the terrestrial ecosystem. The only difference is that it is carried out by marine. bacteria.

The nitrogen -containing compounds that fall into the ocean as sediments get compressed over long periods and form sedimentary rock. Due to the geological uplift, these sedimentary rocks move to land. Trikially, it was not known that these nitrogen containing sedimen tory rocks are an essential source of nitrogen. But, recent researches have proved that the nitrogen from these rocks is released into the plants die e to the weathering of rocks

Schematic Diagram

Importance of Nitrogen cycle
Importance of the nitrogen cycle are as follows:

1. Helpe plants to synthesise chlorophyll from the nitrogen compounds.
2. Helps in converting inert nitrogen gas into a usable form for the plants through the biochemical process.
3. In the process of ammonification, the bacteria help in decomposing the animal and plant matter which indirectly helps to clean up the environment'
4. Nitrates and nitrites are released into the soil, which helps in eriching the soil with necessary nutrients required for cultivation.
5. Nitrogen is an integral component of the cell and it forms many crucial compounds and important biomolecules.

Nitrogen is also celled by hurray activities such as combustion of fuels and the use of nitrogen fertilisers. These processes, increase the levels of nitrogen containing compounds in the atmosphere. The fertilisers containing nitrogen are washed away in cakes and rivers and results in eutrophication t.

Conclusion:
(1) Nitrogen is abundant in the atmosphere, but it is unusable to plants or animals unless it is converted into nitrogen compounds.

- Nitrogen - fixing bacteria play a crucial role in fixing the atmospheric nitrogen into nitrogen compounds that can be used by the plants.
- The plants absorb the usable nitrogen compounds from the soil through their roots. Then, these nitrogen compounds are used for the production of proteins and other compourrots in the cell.
(1) Animals assimilate nitrogen by consuming these plants or other animals that contain nitrogen. Humans consume proteins from these plants and animals and then, the nitrogen assimilates into our system.
* During the final stages of nitrogen cycle, bacteria and fungi help decompose organic matter, where the nitrogenous compounds get dissolved into the soil which is again used by plants.
- Some bacteria then convert these nitrogenous compounds in the soil and turn it into nitrogen gas. Eventually. it goes back to the atmosphere
- These sets of process repeat con tivucuosly and thus maintain the percentage of nitrogen in the atmosphere.

ACKNOWLEDGEMENT
1 convey my deep sense of gratitude to sir, for suggesting the way to find suitable for the development, in the preparation of the project manuscript. I owe to him in every sence for providing me with the facilities, valuable guidance and constant help through out the course of inves-ligation.

CERTIFICATE.
Certified that the project work submitted by Batik Biswas is done under the supervision of my honourable sis as a part of curriculum for the partial fulfilment of the class -

UG and Semester.

Dale -
Signature of the Teaches

NARENDRAPUR
ENVIRONMENTAL STUDIES

PROJECT TITLE:
Corona Pandemic and Role of Common People to Control it

NAME : SAYAK NAG
COLLEGE ROLL NO : MTUG/067/19
DEPARTMENT: Mathematics
YEAR : 2020
SIGNATURE : Sayak Nag

TOPIC
CORONA PANDEMIC AND ROLE OF COMMON PEOPLE TO CONTROL IT

The Coronavirus, a pandemic has made us realize that we all are connected and this entire war--ld is like a family. Although corrected, medical experts have suggested that social distancing and wearing of masks are some of the most perfect solution to fight against the new evil.

From March 25, India's
honourable Prime Minister Sori
Narendra Modi initiated the most extreme step in the mitigation strategy of COVID-19,i.e., the lockdown. This is a very coura--geous step taken by the Indian government, and as res-- ponsible citizens, we all need to abide by its instructions. If we are instructed to remain at home, we
need to!
Most countries follow the con--tamment, delay, and mitigation step-- wise strategy. to follow COVID-19.

In the very early stage, people who had recently travelled to other countries were tested positive, which means that they were affected by the coronavirus. This is the 'stage of imported cases?. India followed the 'containment strategy'. At this stage, we isolated these patients, tracked the--ir contracts, and quarantined them.

Then we had the second stage, of 'local transmission', wherein contacts of the patients developed the disease. At this stage, Indian public health officials continued contact-tracing \& also instituted the 'delay measures' in the form of social distancing, wearing of masks and closed offices, schools and colleges and advised against large gatherings like weddings.

Next, India expects the stage of ${ }^{6}$ community spread?. In this stage, people with no history of contact with visitors from foriegn countries or with their contacts acquire the COVID-19 infection.

The last and most extreme stage is the epidemic phase, where we can have hundreds or thousands of patients with the disease within the country. In this stage of the epidemic, the most reliable control measure is an extreme mitigation step known as ${ }^{6}$ lock down? But by this time, ser-- eral hundred patients were already dead in these countries.

Every religions activity has been on halt in lien of coronavirus outbreak. Still if we see any of the gathering around. It's our responsibility to guide and report if required. The Constitution of

Indian citizen and every-order must be accepted as a commandment. We live in a democracy and we have very right to put or thoughts on the table but this is the time to unite and stand with our govern--rent.

The outbreak of corona-virus has also affected the mental health of humans as everyone reacts differently to stressful situations. To understa--nd better 66 It is not the Coronavirus which is dangerous but it is the quick spread which is a threat". So, let us do our part and participate in this battle by staying at home.

There are some strategies with lower economic consequences. For exam--pile, a flier countries are following a strategy of building herd in-
lee any lockolown. The logic behind this idea is that by exposing younger people to the virus, most individuals in the community will develop immunity, and this ${ }^{6}$ herd immunity' will subsequently protect the vulnerable population.

The pitfall of this strategy is the possibility of a large number of vulnerable people succumbing to the disease, overwhelming the healthcare system, and potentially resulting in a catastrophic scenario. The United Kingdom initially followed the herd immunity strategy lout later relaised its impracticality and quickly moved to. delay and mitigate.

Other countries, such as the Nether-- lands following a strategy similar to herd immunity. Though the Ne --thorlands has closed schools, colleges and officials, there is no lockdown and there are no restrictions on the
people's movement. Sweden is also following this strategy.

So, is the Indian strategy the right one? Yes, we believe in the con--taimment, delay and mitigation strategy similar to most other countries. But unlike most other countries, we quickly transitioned from containment to delay and then from delay to extreme mi-- tigation. We believe our strategy will help our country reduce the impact of the COVID-19 outlereak. As a responsible citizen, we must follow all the measures recommended by our government.

The Access to COVID-19 Tods (ACT) Accelerator, is a groundbreaking global collaboration to accelerate development, production, and equitable access to COVID-19 tests, treatments and vaccines.

Launched at the end of April 2020, at an event co-hosted by the Director-General of the World. Health.

Organization (WHO), the President of France, the President of the European Comission, and the Bill and Melinda Gates Foundation, the Access to COVID -19 Tools (ACT) Accelerator brings together govern--ments, scientists, buisnesses, civil society and philanthropists and global health organizations.

These organizations have joi--ned forces to speed up an an end to the pandemic by sur-- pporting the development and equitable distribution of the tests, treatments and vaccines the world needs to reduce mortality and severe disease, restoring full societal and economic activity globally in the near term, and facilitating high-level control of COVID-19 disease in the medium term.

The world is in the midst of a COVID-19 pandemic. AS WHO and partners work together on the response - tracking the pandemic, advising on critical interventions, distributing vital medical supplies
those in need -they are racing to find a vaccine.

These vaccines save millions of lives each year. Vaccines work by training and preparing the body's natural defences like the immune system, to recognize and fight off the viruses and bacteria they target. If the body is exposed to those disease - causing germs later, the body is immediately ready to destroy them, preventing illness.
Immunization currently prevents 2-3 million deaths every year from diseases like diphtheria, tet--anus, pertussis, influenza and measles. There are now vaccines to prevent more than 20 life-thgeatening
diseases, and work is ongoing at unprecedented speed to also make - COVID-19 a vaccine -preventable disease.

Under development, there are currently more than 100 COVID-19 vaccine candidates, with a number of these in the human trial phase. WHO is working in collaboration with scientists, bus--ness, and global health organiza--tions through the ACT Accelerator to speed up the pandemic res --ponse. When a safe and effect--ive vaccine is found, covax (led by WHO, GAVI and CEPI) will faci-- litate the equitable access and distribution of these vaccines to protect people in all countries. People most at risk will be prioritized.

- Moreover, the $R \& D$ Blueprint was activated to accelerate diagnostics, vaccines and therapentics for this novel coronavirus. The Blueprint aims to improve coordination bet--ween scientists and global health
professionals, accelerate. The research and development process, and develop new norms and standards to learn from and improve upon the global response.

The draft landscape of COVID-19 vaccine candidates con--tains information on vaccine candidates collected through public information (e.g. clinical trial registries) and information that were directly provided by vaccine developers to WHO. The landscape is generally updated twice a week, based on the latest information, including those we receive from scientists and research.
WHO has published the target product profiles for COVID-19 vaccines, which describes the preferred and minimally accept-- able profiles for human vaccines for long term pro-. - tection of persons at high ongoing risk of COVID-19, and for reactive use in outbreak
settings with rapid onset of immunity. We have also published the criteria for prioritization of vaccines for clinical trials.

The proposed attributes and criteria provide considerations for the evaluation and prioritization of COVID-19 candidate vaccines to be con-

- sidered for further dive--lopment by WHO. The target audience inch ide vaccine scientists, product developers, manufacterers, regulators and funding agencies.

