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SUMMARY 

Theoretical investigation on ion-ion and ion-atom collision in intermediate and high 

energies has been reported in the present thesis.The thesis is submitted to the Jadavpur 

University for fulfillment of requirement for the degree of Doctor of Philosophy (Science). 

Part I of the thesis contains the general introduction mentioning the basic definition and necessity 

of the cross section data in the diverse field of Physics. The author has reviewed up-to-date 

investigations in the framework of different approximation in ion-atom and ion-ion collision 

which are also the contents of this part. Part II of this thesis contains quantum and classical 

studies of ion-atom interaction. This part is subdivided into six chapters.  

In Chapter II, total and state-selective cross sections for charge transfer in H+ + He+, He2++ Li2+, 

He2+ + He+ and Li3+ + Li2+ collisions have been calculated using the three body boundary 

corrected continuum intermediate state (BCCIS-3B) approximation at energy range 30-2000 

keV/amu. In this model, distortions in the final channel related to the Coulomb continuum states 

of the projectile ion and the electron in the field of the residual target are included. Sub-shell 

distribution of total charge transfer cross section has been reported in tabular form. The 

comparison of the results is made with those of other recent theoretical methods and with 

experimental measurements. Results so obtained are in very good agreement with the available 

experimental findings. 

In Chapter III, cross sections for single-electron capture in collisions of He2+, Liq+ (q=1,2,3), C6+ 

and O8+ ions with helium atom at incident energy ranging from 50 to 5000 keV/amu have been 

calculated in the framework of four-body boundary corrected continuum intermediate state 

(BCCIS-4B) approximation in both prior and post forms. In this formalism, distortion in the final 

channel related to the Coulomb continuum states of the projectile ion and the active electron in 

the field of residual target ion are included. In all cases, total single-electron capture cross 

sections have been calculated by summing over all contributions upto n=3 shells and sub-shells 

respectively. It has been observed that the contribution of the capture cross section into the 

excited states is significant for asymmetric collision (ZP> ZT) and is insignificant for symmetric 
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collision. Numerical results for the total cross sections show good agreement with the available 

experimental findings particularly in the post-form. Post-prior discrepancy has been found to be 

within 30% except for Li+ + He interaction below 150 keV/amu. 

In Chapter IV,four-body formalism of boundary corrected continuum intermediate state (BCCIS-

4B) approximation have been applied to calculate the single-electron capture cross sections by 

fast protons through some helium like ions in a large energy range from 30-1000 keV. In this 

model, distortion has been taken into account in the entrance channel. In the final channel, the 

passive electron plays the role of screening of the target ion. However, continuum states of the 

projectile and the electron in the field of the residual target ion are included. The comparison of 

the results is made with those of other theoretical investigations and experimental findings. The 

present calculated results are found to be in good agreement with the available experimental 

findings. 

In Chapter V, single-electron capture in p-He collisions have been calculated at incident 

projectile energies ranging from 30 keV to 1 MeV by means of the four-body boundary corrected 

continuum intermediate state approximation. The effect of the dynamic electron correlations is 

explicitly taken into account through the complete perturbation potentials. Total single-electron 

capture cross sections have been calculated by summing over the contributions upto n=2 shells 

and sub-shells respectively. The differential cross sections are calculated at impact energies in 

the range from 30 to 293 keV. Overall, the calculated cross sections are in good agreement with 

the recent experimental findings. Post-prior discrepancy for total cross sections is negligible 

below 200 keV.  

In Chapter VI,the Classical Trajectory Monte Carlo (CTMC) method and the post form of three-

body boundary corrected continuum intermediate state (BCCIS-3B) approximation are employed 

to calculate the cross sections for total and state-selective electron capture in collision of highly 

charged Neq+ ions with ground state hydrogen atom in the intermediate to high energy region. In 

both these methods, the active electron interactions with the partially stripped neon ions are 

described by a model potential containing both a long-range part and a short-range part. We have 

also calculated the double electron- capture cross sections in collision of fully stripped neon ion 
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with helium atom in the energy range 80-2000 keV/amu using the post-form of four-body 

BCCIS approximation (BCCIS-4B). In BCCIS formalism, the intermediate continuum state of 

the active electrons with the projectile ion has been taken into account as the projectile charge is 

greater than the target charge. In addition, state-selective charge transfer cross sections are given 

in tabular and graphical form. 

In Chapter VII,the total cross sections for single-charge transfer in H + H, He+ + H, He+ + He+ 

and Li2+ + H collisions have been calculated in the framework of four-body formalism of 

boundary corrected continuum intermediate state approximation in the energy range 20 – 5000 

keV/amu. The dynamic electron correlation is explicitly taken into account through the complete 

perturbation potentials. In the initial channel, the passive electron plays the role of screening of 

the projectile ion. However, continuum states of the target ion and the electron in the field of the 

residual projectile ion are included. In all cases, total single- electron capture cross sections have 

been calculated by summing over all contributions up to n = 2 shells and sub shells, respectively 

except H-H collision. The present computed results, both in prior and post forms of BCCIS - 4B 

method for symmetric and asymmetric cases have been compared with the available theoretical 

and experimental results. We found that our computed results particularly in the prior form are in 

better agreement with the experimental observations in comparison to other theoretical findings. 

Post-prior discrepancy has been found to be within 20% above 70 keV/amu for all interactions. 
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1. INTRODUCTION 

Research in theoretical atomic, molecular, and optical physics (TAMOP) is characterized by two 

intertwined strands, understanding and utility. AMO physics seeks to investigate and understand 

the fundamental behaviour of matter and fields as Nature presents them to us, at the energy and 

length scales set by electrons, atoms, molecules, and photons and their interactions. Building on 

this understanding, TAMOP researchers seek also to formulate and develop techniques for 

manipulating and controlling AMO systems to perform tasks that Nature never contemplated, 

tasks that lie at the heart of present and future technology development. That AMO physics is 

planted so firmly at the intersection of understanding and utility is the field’s greatest strength—

and makes it unique among the sub disciplines of physics. At this intersection theoretical and 

experimental research efforts are often very tightly coupled. 

In last few decades, AMO physics has undergone a renaissance. As some evidence of this, 5 of 

the last 16 Nobel prizes have been awarded in AMO physics: 1997, 2001, 2005, 2009, and 

2012.As one of the areas leading to the development of quantum mechanics, atomic/molecular 

collisions have been core components of AMO research since the beginning of modern physics. 

These traditional fields continue to be of tremendous importance, both for fundamental research 

and for practical applications. 

Recently, charge transfer in ion-atom/ion collisions is being able to make a remarkable place 

in the study of atomic and molecular physics. But these studies are not only confined to intrinsic 

science they also find their applications in diverse branches of physics, viz. astrophysics, 

atmospheric physics, plasma physics, in fusion researches, in the development of the production 

of soft x-ray lasers etc. All these physical aspects are described in brief as follows. 

              The cross-sectional data of charge transfer between partially or fully stripped ions and 

heavy atoms are of paramount importance in atmospheric physics as well as in astrophysics. The 

emission strengths of lines arising from transitions in neutral and ionized atomic systems such as 

CI, NI, NII, NeII, OI,OII, SI and SII in gaseous nebulae are considerably stronger than the 

strengths in theoretical models calculated (particularly for OII doublets) for quasars, planetary 

nebulae, Seyfert galaxies and diffuse HII regions. The two-phase model of the interstellar 
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medium has become successful to a great extent in explaining many of the characteristics of the 

interstellar gas. This model is based upon the postulate of an ionizing source uniform throughout 

the galaxy with suitable frequencies (10-15 sec-1) which is attributed either to low energy cosmic 

rays or soft x-rays neither of which can be detected in the solar neighbourhood. Steigman has 

pointed out that charge transfer in collisions between highly charged ions of 

C,N,O,Ne,Mg,Si,P,S,etc. and neutral atoms of hydrogen or helium may be rapid at thermal 

energies, which is consistent with the work of Bates and Moiseiwitsch. If these reactions are 

rapid, they will suppress highly charged ions in the HI region. This feature guarantees that the 

observed absorption features from such ions can not originate in the interstellar gas. The possible 

implications of this reaction are consistent with the observations of interstellar medium, HII 

regions and planetary nebulae. Thus the discrepancies in this field of astrophysics are removed. 

Observations by x-ray satellites such as ROSAT, INTEGRAL, RXTE etc. indicate that X-rays 

are produced by almost all comets and many other objects in the solar system. Such X-ray 

observations of comets and other objects of the solar system may be used to determine the 

structure and dynamics of the solar wind. Minor ions in the solar wind exist in highly charged 

states, including the species such as O7+,O6+,C6+,C5+,N6+,Ne8+,Si9+ and Fe12+. Such ions readily 

undergo charge transfer reactions in which an incident ion removes an electron from a target 

neutral atom or molecule. The product ion remains highly charged and is almost always left in an 

excited state. The energy required to power X-ray or EUV emission originates in the hot solar 

corona and is temporarily stored as potential energy in highly stripped solar wind ions until this 

energy is released by charge transfer collisions. The X-ray emission line intensities of the comets 

C/2002 T7 (LINEAR), C/2001 Q4 (NEAT) etc. are consistent with the model emission lines of 

C,N,O,Mg,Fe,Si and Ne solar wind ions. In a recent report, a group of scientist from USA has 

claimed that they have recorded the X-ray emission of highly charged ions of carbon, nitrogen 

and oxygen which simulates charge exchange reactions between heavy ions in the solar wind and 

neutral gases in cometarycomae. However, extraction of useful information on solar wind 

properties from such observations will require further improvement in our understanding of the 

SWCX (Solar Wind Charge Exchange) mechanism. The SWCX mechanism operates whenever 

the solar wind interacts with neutral gas and has also been suggested as a source of X-ray 

emission from Venus and Mars, the terrestrial hydrogen geo-corona and interstellar neutral gas. 
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The X-ray line spectra of highly charged oxygen ions and the Ultraviolet emission-line spectra of 

precipitating oxygen atoms and ions in the auroral atmosphere of Jupiter have been calculated 

using cross sectional data of state-selective charge transfer. In both the above cases the oxygen 

atoms or ions excited by charge transfer interaction with molecular hydrogen. With these studies 

people come to know that the UV emissions from the precipitating oxygen atoms and ions are far 

from being discernible in the Jovian auroral spectra. And this finding also provides a straight 

forward explanation of the negative search for any direct UV signature of heavy ion precipitation 

in the Jovian aurora,putting an end to the decade-long controversy on the auroral mechanism of 

Jupiter. 

                 Neutral beam of atoms may be used for probing plasmas in Tokmak devices. 

Kislyakov and Petrov have used 4-14 keV beams of hydrogen as a probe. Attenuation of such 

type of beams occurs due to ionization of the injected beams by the process of charge transfer 

and ionization by the plasma protons or ionization by plasma electrons. Thus the proton density 

in plasma can be determined by the knowledge of the cross sections of such processes. The 

multiple electron transfer between an ion and an atom plays an important role as an energy loss 

mechanism in high temperature and astrophysical plasmas. The X-ray spectra obtained from 

electron capture will be powerful diagnostic probes of the capture mechanism and of the diverse 

range of laboratory and astrophysical plasma. Shaikh et al have constructed a model which 

describes a partially ionized magneto-fluid ISM (interstellar medium) that couples a neutral 

hydrogen fluid with plasma primarily through charge exchange interactions. In double electron 

capture by alpha particles from lithium atoms, a neutral lithium beam may be used as a probe to 

find the alpha particle distribution in Tokmak fusion reactors. After double electron capture, the 

resulting helium atom can escape from the plasma field and can be analyzed by conventional 

means. Electron capture by plasma protons from the injected beam results in the formation of 

hydrogen atom in excited states. An emission of radiation is followed due to subsequent decay of 

these excited atoms. Studies of Doppler shift of such radiation help to assess the temperature of 

the plasma.  

                In fusion devices based on magnetic confinement of high temperature plasma, one of 

the most promising forms of supplementary heating is by the injection of fast neutral beams of an 
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appropriate isotope of hydrogen. In practice, the effectiveness of this form of heating is 

complicated by the presence of small fractions of partially of fully ionized impurities such as 

carbon, nitrogen, oxygen etc. as well as partially ionized metal atoms of high atomic number z 

arising from interactions at the walls of the confining vessel. The injection of fast neutral beams 

(beams of 3He are also possible) is being considered for the supply of fuel to the plasma in a 

fusion reactor. When an intense fast neutral beam of an appropriate isotope of hydrogen (e.g. 

deuterium) injects through the magnetic confining field and into the plasma it undergoes electron 

loss by both charge transfer )HHH(H ++ +→+ and ionization e)HHH(H ++→+ +++ in 

collisions with the plasma protons. The resulting fast protons are trapped in the confining field 

and give up their energy in collisions with the plasma constituents. Since electron capture takes 

place into highly excited states, the population inversion of the parent ions occur. The subsequent 

radiative decay of such short-lived excited states can result in very substantial energy loss. 

              The studies of radiation effects on biological bodies, nuclear workers demand the 

knowledge of collision processes. Therapeutic treatments are being done to treat the cancer and 

other foreign bodies. Several years’ proton therapy found greater advantages over other 

conventional radiation. Proton beam causes less damage to the live tissues surrounding the 

affected part of the patient. The three dimensional hologram of energy spectrum of proton beam 

are readily obtainable and proper dose level may be ascertained to the patient. 

               These many fold applications of cross-sectional data in diverse field of physics and 

astrophysics play an important role behind our motivation for collision studies on charge transfer 

and ionization in ion-atom/ion collisions. 

1.1. BASIC DEFINITIONS: 

Collision is short duration interaction between two bodies or more than two bodies 

simultaneously causing change in motion of bodies involved due to internal forces acted between 

them during this. The range of scale of collision may be microscopic of subatomic particle to the 

astronomic scale of colliding stars and colliding galaxies. Although, the most common colloquial 

use of the word “collision” refers to accidents in which two or more objects collide, in scientific 

use, it is an isolated event in which two or more moving bodies exert forces on each other for a 
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relatively short time. In collision, the momentum and kinetic energy are transferred from one 

object to another, but the total momentum of both objects before and after collision is the same. 

A collision does not have to be a force of contact.  In scattering processes the strength of 

interactions among atomic particles could be viewed through observables called cross sections. 

 

� Scattering: 

Scattering occurs when we fire a projectile at a target.  The projectile will be 'scattered' from it or 

could remain unscattered, i.e. its direction of motion is altered by the target.   By measuring the 

numbers of particles which scatter by different amounts we can work out much about the 

structure of the target.  There are two kinds of scattering elastic and inelastic.  For scattering it is 

easiest if the projectile is a fundamental particle (so can be considered as a point without any 

structure, such as the electron) so that the effects of any size is not there to complicate results and 

we are only observing the target (say a proton). 

 

� Elastic scattering: 

In an elastic collision the incident and target particles remain intact (like billiard balls).  No 

energy is lost (to other processes) and the projectile's kinetic energy is shared between itself and 

the target after the collision, momentum is of course always conserved.  If the target is point-like 

then elastic scattering is the only possibility.  If the target has size then the scattering may still be 

an elastic process, however the formula for it will altered slightly, depending on the momentum 

imparted to the target particle (by a factor called the form factor). Let us assume a typical 

collision between a system A of the incident beam and a scattered B of the target, then in elastic 

scattering, two bodies A and B are simply scattered without any change in their internal 

structure,       

A + B →A + B 

� Inelastic scattering: 

In inelastic scattering part of the kinetic energy of the incident particle is lost inside the target 

giving rise to some internal processes and only a fraction of it goes into moving the whole target. 

For example if you take a spherical container and then fire a small ball onto it the collision could 

be considered to be elastic (in an ideal world). If you were then to fill it with some marbles and 
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then fire another ball at it some of the kinetic energy would go into moving the ball, but a 

fraction would also move around the marbles inside. In this sense we can say that inelastic 

scattering will occur if the target consists of smaller components. One other difference between 

inelastic and elastic scattering is that with elastic scattering the target will not change form, 

whereas with inelastic scattering the target can break up into new forms.  A proton may make 

hadrons (particles built from quarks) by inelastic collisions. We now see that if we can show that 

the target (say a proton) scatters inelastically then we can presume that there must be some 

internal process occurring, which should not happen if the particle is fundamental, because this 

suggests there is something smaller inside to cause this process. In this scattering, the two 

particles A and (or) B undergo a change in their internal quantum state after collision.  

      

B + A  B +A 

B +A   B +A 

B + A  B +A 

′′→

′→

′→

   

where A′  and B′ are the new internal states after inelastic collision. 

These interaction (scattering) processes are in general mediated by the electromagnetic force, 

meaning that it is really an exchange process between the incident electron and the target.  This 

is an electromagnetic interaction and the mediator (the particle which is exchanged between the 

two interacting ones and produces the force, in this case for electromagnetic it's the photon).  

Take for example a particle of initial momentum p which interacts and scatters from the target 

with a new momentum p'.  The difference is q = p-p'   which is the momentum transferred to the 

target.  It is found that in elastic scattering the cross-section of scattering falls as q2 increases.  If 

we are able to work out what the form factor is (by seeing how the scattering is reduced from its 

value for a point particle), then we can get an idea of how the charge is distributed inside the 

target (in fact the form factor is the fourier transform of the charge distribution). 

� Reactions:It can also possible that a composite system (A+B) splits into two systems C and 

D, different from A and B, or into 2n ≥ systems i.e.  

A + B → C + D 
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                         A + B → C1 + C2 + C3 +……………+ Cn. 

In elastic collisions the two colliding particles A and B remain in the initial channel, while 

inelastic collisions or reactions processes leading from a given initial channel to a different final 

channel in scattering between a bare nucleus of charge (projectile) ZA and ZB. Let us consider, 

the target nucleus of charge ZB has two electrons (e1 and e2) bound to the nucleus (helium-like 

atomic system). Then the following rearrangement collision may be possible, 

21 f2Bf1Ai21BA )e,(Z)e,(Z)e,e;(ZZ +→+ (Single electron capture) 

                                                                1f2BA e)e,(ZZ ++→
     

(Single ionization) 

                                                                
*
f21BA )e,e;(ZZ +→

         
(Excitation) 

                                                                Bf21A Z)e,e;(Z +→
        

(Double electron capture) 

                                                                21BA eeZZ +++→
           

(Double ionization). 

Other than the above mentioned process there are also some processes like transfer ionization, 

transfer excitation, multiple ionization etc. 

The most important thing is the energy range of collision according to the value of W, which is 

defined as the ratio between the relative velocity of the projectile and the orbital velocity (vo) of 

the active electron in the target. 

• W << 1 indicates adiabatic or low energy region. 

• 1W ≈ indicates intermediate energy region. 

• W >> 1 indicates high energy region.  

The unit of cross section is that of area. Since the order of atomic radius is of the order of 10-8 

cm, the atomic cross section will be in the order of 10-16 cm2. But, in atomic and molecular 

physics cross sections are generally expressed in unit of 2
0πa , where a0 is the radius of the first 

Bohr orbit of hydrogen atom. 

 

1.2. APPLICATION AREAS 

Elastic collisions are of paramount importance for Ohmic heating and energy dissipation into the 

plasma; inelastic collisions are responsible for all the electronic excitation processes. For both 

processes, the deductive approach is chosen. By electronic and ionic impact, electrons can be 
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released from surfaces; this process is required for the carrier avalanche in DC discharges, but 

has regained interest for stabilizing processes in production reactors whose inner surface is 

subject to various (mostly unintended) coating reactions. In addition we can describe the 

application areas of atomic collisions with the following points. 

 

1.2.1. RADIATION THERAPY  

When radiations (particles or photons) from an outside source impinge on and penetrate into a 

material, various observable phenomena occur that are a direct result of a chain of events 

referred to as a radiation cascade. The change of the structure of a material can possible 

subjected to fast heavy particle radiation, like, alpha particles, protons, or neutrons. It can be 

understood as a series of collision events of the incident particles with the atoms of the target 

material. The fast moving incident particles in the collisions transfer kinetic energy to a number 

of target atoms and may ionize or excite these atoms and even initiate nuclear reaction. Very 

high energy photons, x-rays and γ -rays are often produced in materials when the tightly bonded, 

inner-shell electrons of heavy atoms are removed or when nuclear reactions are initiated. These 

high energy photons may also produce additional ionization and hence electrons. The damage to 

biological materials is mostly due to the cascade of ionization events set up by the secondary 

electrons and high-energy photons. Radiation cascades are also used to modify the nature of a 

material, by implanting incident atoms, and to remove layers of a material, by “knocking off” the 

surface atoms. 

The biological case is worth pursuing as a means of understanding the relationship between 

initial radiation events and final macroscopic effects. The effect of high-energy radiation may be 

used on cells or the biological constituents of the cell, i.e., DNA, RNA and various enzymes. The 

energized charged particles such as proton and other forms of radiation pass near the orbiting 

electrons of the atoms, positively charged of proton attracts negatively charged electrons pulling 

them out from the orbits. Hence ionization occurs and it changes the characteristics of the atom 

and consequently the characteristics of the molecules within which the atom resides. Because of 

ionization, the radiation damages the molecules within the cell especially the DNA or genetic 

material. The damaged DNA destroys the specific cell functions, particularly the ability to divide 

or proliferate. Hence enzymes fail to adequately repair the injury caused to the cells.   
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The radiation effect can be use in therapeutic application. Proton therapy can be used for cancer 

treatment. Recently, it is found very useful over conventional radiation. The major advantage is 

that proton beam causes less harm to the live tissues surrounding the affected cells. The 

capability provides greater control and precision and therefore, superior management of 

treatment. 

 

1.2.2. ELECTRON COLLISION CROSS SECTION DATA IN PLASMA 

PHYSICS 

Charge transfer research has a great importance in astrophysics to understand the processes 

involved inside the nebulae, supernova remnants and other astrophysical phenomenon. The cross 

sectional data of charge transfer between partially or fully stripped ions and atoms are used for 

investigating the emission strengths of lines arising from transitions in neutral and ionized 

atomic systems such as CI, NI, NII,NEII,OI,OII,SI and SII in gaseous nebulae. They are 

considerably stronger than the strengths in theoretical models calculated for quasars [1], 

planetary nebulae [2], Seyfert galaxies [3] and diffuse HII regions [4]. 

The needs for electron cross section data depend on the subfield of plasma physics and 

parameters and characteristics of plasma [5]. Generally, one can observe diverse conditions of 

plasmas i.e. densities, temperatures, energy distributions of atomic particles, particle 

compositions, etc. Depending of what is the major subject of the study, whether it is 

astrophysical or fusion plasmas, plasmas in gas discharge lasers or plasma etching processes in 

semiconductor manufacturing, or just optical plasma diagnostics,one should consider appropriate 

set of elementary atomic particle processes and accordingly adequatecross sections. 

Numerous atomic and molecular species are present in plasmas and are used in applications such 

as etching and deposition. Very often rare gas atoms are present and considered as plasma 

constituents together with di-, tri- and poly-atomic molecules as well as radicals and other 

fragments. These species could be in their ground state or excited (and metastable) states. In the 

study of electron interaction with these atomic particles, the variety of processes is possible and 

each of them is characterized by cross section that is energy and angular dependent value. 

 



23 

 

1.2.3. NEEDS FOR CROSS SECTIONS IN DIFFERENT TYPES OF 

PLASMAS 

Regarding the needs for atomic and molecular data in astrophysical plasmas, Jorissen [6] 

identified two major purposes where data are used: (i) in computing opacity of the stellar matter 

and (ii) in determining abundances for specific chemical elements. He had recognized several 

current problems where atomic data are important for appropriate solutions: iron problem and the 

question of estimating stellar metallicity, oxygen problem, the importance of accurate knowledge 

of energies, transitions, and oscillator strengths for heavy elements, problem of dating the oldest 

galactic stars, etc. In fusion plasmas accurate atomic and molecular data sets are used to model 

conditions in tokamak edge radiation and particle behaviour in cold divertor regions (Kubo [7]). 

For controlling the impurity particle transport and edge plasma radiation losses, data for effective 

ionization and recombination rate coefficients are required. Currently Ar atoms are injected for 

radiation loss power enhancement but the role of Kr atoms is envisaged in this process. Also 

study of other heavy atoms is a priority due to their use as divertor plates. Collisions of hydrogen 

molecule, hydrocarbon molecules and He atoms have been extensively studied in cold divertor 

plasmas. Regarding the electron collision processesmajor investigations are directed toward the 

understanding of the role of vibrationally excited H2 molecules [8]. Plasma processes in gas 

discharge lasers[9]are well understood and described in detail. Electron collisions play an 

important role in creating population inversion. They can easily populate metastable states as the 

scattering process could be viewed as an interaction of a multipole with the atomic field and 

electron cloud. Determining the electron excitation cross sections of optically forbidden states 

could serve as a test for lasing properties of the particular element. By the development of 

ultrafast laser technology, when the sub-femtosecond pulses are achieved, the study of the re-

scattering processes of electrons emitted under strong laser field with their parent ions becomes 

possible with high precision [10]. Challenge in today’s semiconductor manufacturing industry is 

using the plasma etching processes for producing nanometric patterns. For optical plasma 

diagnostics the knowledge of electron cross sections for rare gas atoms is crucial. Boffard and 

collaborators [11] have demonstrated that by knowing these cross sections and combining them 

with plasma emission measurements it is possible to extract many plasma parameters. Cross 

section data are needed for both ground state and metastable states atoms. The role of cross 
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sections for metastable atoms had been emphasized in the recent review on plasma electronics 

by Makabe and Petrović [12]. 

 

1.2.4. CROSS SECTIONS FOR ELECTRON INTERACTIONS WITH 

RADICAL SPECIES 

Radicals, as atomic and molecular species with unpaired electrons, are common constituents in 

plasma media and are seen as a key chemical component in many plasma applications in 

semiconductor manufacturing. Although of great practical importance, data sets of electron 

collisional cross sections with radical species is rather scare in scientific literature. It is partly due 

to the difficulties in experimental handling of radicals as unstable and highly reactive species. 

That is why the available literature is mainly consisting of theoretical data. 

The main feed gases used in the plasma etching processes are perfluorocarbons but these are also 

strong greenhouse gases [13]. CF radicals have been studied by several authors. Lee et al [14] 

used a complex optical potential method to calculate elastic differential, integral and momentum 

transfer cross sections as well as total and absorption cross sections in the energy range from 1 to 

500 eV. After comparison they found that DCS data are larger for CF than NO molecule 

especially in the domain of smaller scattering angles (below 60o). Rozumet al [15] exploited R-

matrix theory to obtain elastic and excitation cross sections at the low energy region (below 10 

eV). They also found three shape resonances of different symmetries. Most recently Trevisanet 

al [16] investigated resonant electron – CF collision processes which could lead to production of 

negative ions. They studied the vibrational excitation and electron attachment processes and 

found several low lying negative ion states which are expected to dominate the scattering 

process.  

Rozumet al [17] and Lee et al [18] have used R-matrix method to investigate electron - CF2 

radical cross sections at low-energy electron collisions (less than 10 eV)and calculated elastic 

and excitation cross sections of the six lowest-lying electronically excited states. Lee et al [18] 

have used an iterative Schwinger variational method combined with the distorted-

waveapproximation to solve the scattering equations. Cross sections are deduced in the energy 

range from 1to 500 eV. 
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The need for comprehensive data bases of electron interactions with atomic particles has 

beenidentified long ago. International Conference on Atomic and Molecular Data and Their 

Applications [19] (a continuing series of the conferences) has been devoted to this aspect of 

research activities.Recent development in the field has been summarised also by Mason [20] who 

had examined newdevelopments in electron induced processing, reviewed the current status of 

databases and identifiedthe most important needs in the future electron/molecule research [21]. 

 

1.2.5. X-RAY LASER DEVELOPMENT 

Electron captures by partly or fully stripped heavy ions from ground state atomic hydrogen or 

helium takes place mainly into excited states due to energy resonance. The charge transfer into 

excited state by emission of radiation [22]. The radiation generally belongs to the soft x-ray 

region. This phenomenon may attribute as x-ray source in the interstellar medium [23]. This 

property of interest may also lead to the possibility of production of an x-ray laser [24-26]. 

 

1.3. FORMAL THEORY OF QUANTUM SCATTERING 

Quantum mechanical formalism is classified into two categories i.e., time dependent and time 

independent formalism. Here we shall mainly discuss the time independent formalism. However, 

these two formalism have been shown to be equivalent [27]. In low energy region, molecular 

state expansion method in the framework of close-coupling approximation is best suited. In this 

method, the electronic states are determined by the states of the quasi molecules so formed 

during the slow counter. All features and development of this theory are explained in the review 

articles of Greentand [28] and Delos [29] and also Basu et al [30]. A lot of progress has been 

achieved by many authors [31-38] to investigate the fully/ partially stripped ion-atom collisions 

in the low energy region by the use of molecular state expansion method. Kimura and Olson [39] 

have studied the single and double electron capture cross section from helium by C4+ and the 

single electron capture cross section by C6+ in the low energy region using molecular orbital 

method. 



 

In order to discuss different high energy methods, we shall now start from the origin of these 

methods in the framework of formal theory of scattering.

We are dealing with the rearrangement process of the type 

where  α and β are two colliding objects (may be structureless or not) and 

electron to be transferred. α, β and 

reaction (1), the particle labeled by 

described by α- channel and the final channel by 

particles will be represented by the third particle i.e. 

particles labeled by β, γ and so on. The Schrodinger equation for the whole system may be 

written as,     

Here H, the hamiltonian for the whole system may be 
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Fig.1.1. Collision Diagram 

In order to discuss different high energy methods, we shall now start from the origin of these 

methods in the framework of formal theory of scattering. 

We are dealing with the rearrangement process of the type  

α + (β, γ)→( α, γ)+ β    

 are two colliding objects (may be structureless or not) and 

α β and γ interact via two-body potential Vi (i= 

reaction (1), the particle labeled by α is free in the initial channel, so the initial channel is 

channel and the final channel by β- channel. Interaction between any two 

particles will be represented by the third particle i.e. αV  represents the interaction between the 

and so on. The Schrodinger equation for the whole system may be 
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In order to discuss different high energy methods, we shall now start from the origin of these 

 (1)  

 are two colliding objects (may be structureless or not) and γ is the active 

 α, β, γ). For the 

is free in the initial channel, so the initial channel is 

channel. Interaction between any two 

represents the interaction between the 

and so on. The Schrodinger equation for the whole system may be 
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where H0 is the kinetic energy operator in the center of mass frame. 

Co-ordinates and reduced masses are defined as  

     Te rrx
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−=       (4a) 
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rrr
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where  Tr
r

, er
r

, pr
r

 are respectively the co-ordinates of the particles labeled by β,γ and α with 

respect to an arbitrary frame of reference. The reduced masses are defined as 
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where 1, MT and MP are respectively the mass of the particles labeled by γ, β and α. The total 

hamiltonian of the whole system may be split in terms of channel Hamiltonian as, 

αα VHH +=       (6a)  

     ββ VH +=       (6b) 
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where αH , βH  are the hamiltonian for the channels,  α + (β, γ) and ( α, γ) + β respectively. Let 

the complete set of eigen states of αH and βH  are given by 

0)H(E α
iαα =− ϕ      (7a) 

0)H(E β
iββ =− ϕ      (7b) 

where,      ,ε
µ2

k
E α

α

2
α

α +=      (8a) 

,ε
µ2

k
E β

β

2
β

β +=      (8b) 

Here, )(εε βα  is the bound state energy and )(kk βα  is the momentum vector in the entrance 

(exit) channel respectively. Any subscript i or j represents the corresponding states of the system 

in either channel. With ‘On shell energy’ consideration, we may write  

βα EEE == . 

The transition amplitude from the i-th state in the α- channel to the j-th state in the β- channel 

may be written as  

     >=< ++
αi,β

β
j

αβ
ij ψ|V|ψT   (post form) (9a) 

     >=< −− α
iαβj,

αβ
ij ψ|V|ψT   (prior form) (9b) 

where,    α
iα

α
iα

α
iαi,αα

α
iαi, ΩVGψVGψ ϕϕϕϕ +++++ =+=+=   (10a) 

and   β
jβ

β
jβ

β
jβj,ββ

β
jβj, ΩVGψVGψ ϕϕϕϕ −−−−− =+=+=   (10b) 

Here +
αΩ  and −

βΩ  are the Moller operators. +G , −G and −
βG  are respectively the total α- 

channel and β- channel Green’s operators. 

Hence the transition matrix elements given by equations (9a) and (9b) may be written as 

   ><=>+<= +++ α
iαβ

β
j

α
iαβ

β
j

αβ
ij |ΩV||)VG(1V|T ϕϕϕϕ , (11a) 

.|Ω||)VG(1V|T α
i

*
β

β
j

α
iαβ

β
j

αβ
ij ><=>+<= −+− ϕϕϕϕ  (11b) 
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Here any asterisk (*) represents the complex conjugate of the corresponding quantity. 

The differential cross section may be written as 

    
2αβ

ij
α

β

2

βα
αβ
ij T

k

k

π4

µµ

dΩ

dσ
±

±

= ,     (12) 

where  Ω is the solid angle around αk . The total cross section may be written as 

    dΩ
dΩ

dσ
σ

αβ
ijαβ

ij ∫=±
.      (13) 

 

1.3.1. PERTURBATION SERIES WITH THE CORRECT BOUNDARY 

CONDITIONS  

The dynamics of the entire four-body system are described by means of the Schrodinger equation  

0ψE)(H =− ±       (14) 

where ±ψ  are the full scattering states with the outgoing and incoming boundary conditions, 

respectively 

)(Rψ ii ∞→→ ++ ϕ  )(Rψ ff ∞→→ −− ϕ    (15) 

The exact transition amplitude with the correct boundary conditions can be written in the post (+) 

and prior (-) forms as 

    >=< +−+
i

d
ffif ψVT ϕ ,  >=< +−−

i
d
ifif VψT ϕ .   (16) 

Both the forms are equivalent to each other on the energy shell i.e. the exact on-shell expressions 

are equal, −+ = ifif TT , for the transitions for which the total energy is conserved. 

Solving a scattering problem in which four bodies take part (two nuclei and two electrons) is 

extremely difficult. As usual, at intermediate and high impact energies, the powerful and 

versatile procedure of perturbation series expansion is frequently employed. To, this end it is 

convenient to convert the schrodinger equation for a four-body problem into the corresponding 

integral equation such as Lippmann- Schwinger or Faddeev equations or their corresponding 

perturbation expansion series, the correct boundary conditions must always be imposed to the 

entrance and exit channels [40-43]. Despite the widely accepted importance of such initial 
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conditions [44-49], confusion and debates persisted in the literature for a long time on this very 

point.  

 

1.3.2. THE LIPPMANN-SCHWINGER EQUATIONS 

The total scattering function is +++ = ii iεεψ ϕ       (17) 

where G+ is the full Green’s operator and +
iϕ  is the wave function. Here, ε is an infinitesimally 

small positive number. In addition to the total Green operators ±
G , we also define the initial ±

iG

, the final ±
fG  and the free Green resolvent propagators  ±

0G  as  

1)( −± ±−= εiHEG       (18) 

1)( −± ±−= εiHEG
d

ii       (19) 

1)( −± ±−= εiHEG
d

ff       (20) 

1
00 )( −± ±−= εiHEG       (21) 

These propagators are inter-related by the following Lippmann-Schwinger integral equations for 

the total Green functions 

    ±±±± += GVGGG d
iii  

    ±±±± += GVGGG
d

fff  

    ±±±± += VGGGG 00 .      (22) 

Applying the iteration process to equation (6), we obtain the following explanations for the total 

Green resolvent G+ in terms of +
0G , +

iG and +
fG  

 .......0000000000 ++++= +++++++++++
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fff
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d

fff

d

fff GVGVGVGGVGVGGVGGG  . (25) 

Hence, the formal solution of the four-body Lippmann-Schwinger equation in terms of the total 

Green operator G+ is 

   ++++++ +=+= iϕϕϕ )VG(1VGψ d
ii

d
iii .    (26) 
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1.3.3. THE BORN EXPANSIONS WITH THE CORRECT BOUNDARY 

CONDITIONS 

Inserting the formal solution equation (26) into equation (16) for the post form of the transition 

amplitude, it follows that >=< +−+
i

d
ffif ψVT ϕ = >+< ++−

i
d
i

d
ff )VG(1V ϕϕ .  (27) 

This implies that by substituting +G  from equation (23)-(25) into equation (27), we can write 

several different versions of the Born expansions with the correct boundary conditions 
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T ϕϕ .    (31) 

Here +1)(CB
if

T  is the post form of the first Born method with the correct boundary conditions for 

the four body collisions i.e. the CB1-4B method [50,51]. Likewise, the n th Born method with 

the correct boundary conditions (CBn-4B) may be obtained by keeping the first n terms in the 

perturbation expansions. For example, the four body second Born method with the correct 

boundary condition (CB2-4B) can be obtained in this way in the forms 

   >
++−

<+
+

=
+

i
d
i

V
o

Gd
f

V
f

1)(CB
if

T
2)(CB

if;0
T ϕϕ    (32) 

   >
++−

<+
+

=
+

i
d
i

V
i

Gd
f

V
f

1)(CB
if

T
2)(CB

iif;
T ϕϕ    (33) 

   >
++−

<+
+

=
+

i
d
i

V
f

Gd
f

V
f

1)(CB
if

T
2)(CB

fif;
T ϕϕ    (34) 

Here, equation (32) in terms of +
o

G  is recognized as a direct extension of the corresponding 

CB2-3B method of Belkic [52-54]. Many other versions of Born expansion can be formulated by 
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utilizing various possible iterative solutions for G+. In other words, a unique Born series of the 

transition amplitude +
if

T  does not exist. 

 

1.3.4. BOUNDARY CORRECTED CONTINUUM INTERMEDIATE STATE 

(BCCIS) APPROXIMATION 

Belkic [55] have proposed the new theory CDW and CIS approximation in which the distorting 

potential in either channel is chosen to be internuclear two-body coulomb potential. But, the 

conventional CIS approximation does not satisfy the correct boundary condition. To overcome 

the difficulties of conventional CIS approximation Mandal et al [56] have proposed the boundary 

corrected continuum intermediate state (BCCIS) approximation in which the distorting potential 

in the entrance channel has been chosen in such a way that proper boundary conditions for the 

scattering wave functions are satisfied. Another useful feature of this method lies in fact that the 

perturbing potential at which the transition amplitude is calculated, decreases faster than the 

Coulomb potential. The formula used here may be extended easily to non-Coulombic interaction. 

 

The prior form of the transition amplitude for single capture in the framework of the BCCIS 
approximation may be written as,  

>−=< −−
i

pT

)BCCIS(
f

)(
if ψ

r

1

R

1
ψT .    (35) 

The initial non-perturbed wave function is given by  

    )R(χ)r(ψ TiTii

rr += ϕ ,      (36) 

where )r( Ti

r
ϕ  is the initial bound state wave function. The function )R(χ Ti

r
+  is an outgoing 

Coulomb continuum wave function representing the projectile ion moving in the field of an 
effective ion of charge (ZT-1), so the Schrodinger equation is 

     ( ) 0χHE ii =′− +
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Here ik
r

is the initial wave vector.  

The prior form of the transition matrix element,  

>=< −−
iif
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if ψ|V|ψT     (37) 
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The transition amplitude can be written as 
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equation (39) may be written as 
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 3i2f11f1 tkitbkiεεandtaviββ −−=−= . 

Here the constant A is originating from the initial and final bound state wave functions.D(

11 βλ,,ε ) is a parametric differential operator used to generate higher excited state wave 

functions. β and λ  are the orbital exponent of the initial and the final bound state wave functions. 

Taking the Fourier transform of equation (40a) and using integral representation of general three 

denominator integration of Lewis [59], Sinha and Sil [60], 
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Using equation (7), the transition matrix element now becomes 
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Now the complex integration of t2 is converted to real integral which has been subdivided into a 

number of sub-intervals and each sub-interval is integrated numerically using Gauss Laguerre 

quadrature method. Finally a single electron capture cross sections is obtained numerically over 

scattering angles with the Gauss Legendre quadrature method. The orders of two dimensional 

integral are varied until convergence to three decimal places is obtained for the total charge 

transfer cross sections. 

1.3.5. CONTINUUM DISTORTED WAVE (CDW) THEORY 

Cheshire [61] has been formulated the continuum distorted-wave approximation (CDW) to 

include the continuum intermediate states in impact parameter treatments of rearrangement 

collisions. Originally a continuum distorted wave (CDW) was a quantummechanical Coulomb 

wave associated with the motionof an electron attached to an ion/atom relative to, and, 

whilesimultaneously in, the continuum of another ion [61].The context was charge transfer. 

Subsequently this wasgeneralized to the continuum of an electron [62], but notbefore it was 

generalized to ionization in an ion-atomcollision [63]. Based on these latter two papers, Crothers 

andMcCann [64] invented CDW-EIS (eikonal initial state) whichguarantees unitarity of the 

propagating initial state. Otherlater notations for the electron projectile case [62] are C3 and 

BBK. CDW is appropriate for high impact energiesand small and medium impact parameters. 

CDW-EIS isappropriate for large impact parameters and lower energies.One of the principal 

advantages of CDW theory liesin its Coulomb phases which guarantee the correct 
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asymptotic/boundary behaviour [65–67].Of course CDW-EIS is intended to describe ionization 

inintermediate and high-energy collisions. At lower energiescharge transfer is an important 

intermediate event. The wave version of the post form of charge transfer amplitude of Cheshire 

may be obtained with the following choices   

ββxα u
R

1

x

1
wand

x

1
v0,w −−=−== ,   (43) 

where βu   is a short range potential. In CDW approximation, the intermediate continuum states 

are taken into account by the choice of some potential in the form of differential operators. These 

differential operators find their applications onto the continuous spectrum and operate only on 

the subspace where the total scattering wavefunctions may be factorised into two parts, which 

satisfy the proper boundary conditions both in the entrance and exit channels. Cheshire [61] has 

found the asymptotic form of the cross sections in the CDW approximation as  

    OBK12v
CDW Q)

2

πν5
(0.2946Q +≈

∞→
    (44) 

which is of the same form as that of the second Born approximation (B2). This approximation 

has been applied by several authors [68-70]. Belkic et al [71], Crothers [72], Datta et al [73], 

Mandal et al [74] have applied this method to calculate the charge transfer cross section between 

heavy stripped ions with atomic hydrogen in ground state and also with multi-electron 

target.Their results fit well with the existing experimental results [75,76].Crothers and McCann 

[77] have also examined theoretically the symmetric resonance charge exchange in proton 

hydrogen collision using CDW theory within variational framework. 

1.3.6. CLASSICAL TRAJECTORY MONTE CARLO (CTMC) METHOD 

In 1966, Abrines and Percival [78] was first introduced the classical trajectory Monte Carlo 

Method to study ion-atom collisions. Previous classical theory was based on two assumptions: (i) 

during the collision the particle obeys Newtonian laws of motion (ii) The many-particle collision 

is assumed by two-body collision for each atomic electron. The model can be understood in 

terms of classical mechanics including statistical aspects. CTMC is a numerical method used to 
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ordinates of the active electron with respect to the target ion (T) are q1, q2 
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where
1M

M
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T
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1MM

)1(M
M
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+
= TM

,  

and Vij (i,j = e, T, P) is the two body pair interaction between i-th and j-th particle. So the 

Hamilton’s equations of motion may be written as  

ii qp &µ= ,          i=1,2,3,           (49) 

ii qMp &= ,              i=4,5,6,           (50) 
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where )r(V)r(V)r(VV TPTPPePeTeTe

rrr
++= . 

This set of twelve equations given by (49) - (52) describes the motion of the whole system in 

center of mass frame of the active electron and residual target ion. The interaction of the active 

electron with the target is uniquely determined by the coulomb potential. The twelve coupled 

equations are integrated numerically from ∞+−∞= tot with the initial conditions determined 

from a microcanonical ensemble in terms of six random numbers. Such calculations are repeated 

for several thousand trajectories. If NT is the total number of trajectories calculated and NR is the 

number of trajectories which satisfy the criteria of a particular final channel, the cross section for 

the corresponding final channel may be given by, 

2
max

T

R
R πb

N

N
σ =      (53) 

where bmax is the maximum impact parameter beyond which no interaction takes place. The  

standard error is calculated as either  
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The classical trajectory Monte Carlo (CTMC) method originated with Hirschfelder, who studied 

the H + D2 exchange reaction using a mechanical calculator [79]. With the availability of 

computers, the CTMC method was actively applied to a large number of chemical systems to 

determine reaction rates, and final state vibrational and rotational populations (see, e.g., Karplus 

etal. [80]). For atomic physics problems, a major step was introduced by Abrines and Percival 

[78] who employed Kepler's equations and the Bohr-Sommerfield model for atomic hydrogen to 

investigate electron capture and ionization for intermediate velocity collisions of H+ + H. An 

excellent description is given by Percival and Richards [81]. Peach et al [82] applied the CTMC 

method to obtain charge transfer and ionization. Later Wills et al [83] followed the same 

technique for different system. Purkait et al [84] have employed the CTMC simulation method to 

study the sub-shell distributions of total charge transfer cross sections and total ionization cross 

sections in collisions of partuially stripped ions of carbon, nitrogen and oxygen in different 

charge states with grounde state atomic hydrogen in the energy range of 10-200 keV/amu. They 

have also taken into account the interaction of the active electron with the partially stripped 

projectile ion by non-coulomb model potential. Later Ichihiro [85] studied electron transfer cross 

sections for slow, highly charged ion-atomic hydrogen collision with CTMC method. Perez and 

Olson [86] investigated the state selective electron capture cross sections for low energy 

collisions between highly charged bare ions and neutral atoms using this method. Wang et al [87] 

also studied the charge transfer and ionization in collisions of ground state Si3+ ions with atomic 

hydrogen.  The CTMC method has a wide range of applicability to strongly-coupled systems, 

such as collisions by multiply-charged ions [88]. In such systems, perturbation methods fail, and 

basis set limitations of coupled channel molecular- and atomic-orbital techniques have difficulty 

in representing the multitude of active excitation, electron capture, and ionization channels. 
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Vector and parallel-processors now allow increasingly detailed study of the dynamics of the 

heavy projectile and target, along with the active electrons. 

In many ways it is surprising that a classical model can be successful in a quantum mechanical 

world, since the classical radial distribution for the hydrogen atom is described so poorly. 

However, hydrogen's classical momentum distribution is exactly equivalent to the quantum one, 

and since collision processes are primarily determined by velocity matching between projectile 

and electron, reasonable results can be expected. Moreover, the CTMC method preserves 

conservation of flux, energy, and momentum; and Coulomb scattering is the same in both 

quantam and classical frameworks. 
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2.1. INTRODUCTION 

Atomic data for single charge transfer between different combinations of ion-atom/ion are on 

very much demand to study the behaviors of impurity ions in all types of plasma [1]. As a 

consequence, both theoretical [2-11] and experimental studies [12-17] of such processes have 

made substantial progress. In this theoretical paper, we are mainly concerned with the charge 

transfer of hydrogen like ions by the impact of H+, He2+ and Li3+ ions in the wide range of 

energies.  

 The electron capture by protons from hydrogenic ions such as He+ and Li2+ has been 

investigated using the Coulomb-Born (CB) approximation [2]. The calculated capture cross 

sections in the ground state have been shown a significant difference from the corresponding 

Born cross sections in the intermediate energy region. Mukherjee and Sil [5] have calculated the 

one electron capture from the hydrogen like target ions by protons and the alpha particles impact 

into the ground state and the excited 2s state only using the continuum distorted wave (CDW)  

approximation in the energy range 100-2000 keV. They have shown that the major contribution 

to the cross sections for the system He2+-He+ comes from ground to ground state. Fojon et al 

[3,4] studied the formation of positronium atoms through electron capture in collision of 

positrons with hydrogen like target ions such as He+, Li2+ and Be3+ using Coulomb Born 

Approximation (CBA) and CDW-final state approximation (CDW-FS).They have also 

reproduced the differential cross sections and given a scaling law, which is very good for high 

nuclear target charge (ZT). The recent experiment on ion-ion collisions was performed by 

Brauning et al [16] and this data are compared to other theoretical calculations using a two centre 

extension of the basis generator method (BGM) [9-11]. They have also calculated the cross 

sections of such reactions using BGM. The experimental data are in reasonably good agreement 

with BGM calculation. In this paper [16] we have found that the BGM calculations show 

excellent agreement with the iso-electronic resonant collision system He+ + He2+ as well as the 

non-resonant collision system Li2+ + He2+, He+ + H+. Recently, Minami et al [8] have calculated 

the charge transfer cross section for H+ + He+ and He2+ + Li2+ collisions using the lattice time-

dependent Schrodinger equation (LTDSE) and atomic orbital close coupling (AOCC) method in 

the velocity range of 0.5 to 4 amu. They have only given the state-selective contribution of 
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charge transfer cross sections in different principal quantum numbers (n) for H+ + He+ collision 

in tabular form using AOCC, finite-differences LTDSE (LTDSE-FD) and Fourier collection 

LTDSE (LTDSE-FC) methods in the whole energy range. We found that their results are slightly 

overestimate the BGM results of Brauning et al [16] for He2+ + Li2+ collision. They have given a 

scaling of the total charge transfer cross sections. However, to the best of our knowledge, no 

theoretical data of details sub-shell results for the collision system are available. Under the 

context, we are motivated to study the sub-shell distribution of charge transfer cross sections for 

H+ + He+, He2+ + He+, He2+ + Li2+ and Li3+ + Li2+  collisions in the 30-2000 keV/amu impact 

energy range. Here we have employed the three body formalism of the boundary corrected 

continuum intermediate state (BCCIS-3B) approximations. 

 The plan of this paper is as follows. Presenting the details of our calculations in Section 

2, we discuss our computed results in Sec. 3. Finally in Sec. 4 we make our concluding remarks. 

Atomic units have been used throughout. 

2.2. Theory 

The total Hamiltonian for the collision system may be written as 

   ii VHH += = ff VH +        (1) 
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Here e, T and P present active electron, target ion and projectile ion respectively. TR
r

and PR
r

 be 

the position vector of P and T relative to the centre of mass of (T, e) and (P, e) respectively. The 

initial non-perturbed wave function is given by  
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where )r( Ti

r
ϕ  is the initial bound state wave function. The function )R(χ Ti

r
+  is an outgoing 

Coulomb continuum wave function representing the projectile ion moving in the field of an 

effective ion of charge (ZT-1), so the Schrodinger equation is 
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The prior form of the transition matrix element,  
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We write the final wave function, 
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The transition amplitude can be written as 

( ) ( ){ }∫∫ ×+







−= −−

TfTf111
P

P

T

P
P

*
f

R.kiR.ki
TT

)( r.vrvai1;;αiF
r

Z

R

Z
reRdrdNT PfTi

rrrrr rrrr

ϕif  

( ){ } ( ) ( ){ }TiTi311TiTfTf211 R.kRki1;;αiFrR.kRkbi1;;αiF
rrrrr

−−+− ϕ   (5) 



48 

 

where 
( )

)αiΓ(1)αiΓ(1)αiΓ(1eN 321

ααα
2

π
321

++−=
−−

. 

Using integral representation ∫ −− −= τzαi1αi
11 e1)(ττdτ

iπ2

1
);1;(F ziα .The transition amplitude of 

equation (5) may be written as 

 (6) 

where 
T

Rε

P

rλ

T

rβ
tR.kitR.kbitr.vaiR.kiR.ki

TT R

e

r

e

r

e
eRdrdJ

TPT1

3Pi2Tf1TfPPTi

−−−
−++−∫∫=

rrrrrrrrrrrr
,        (6a) 

 3i2f11f1 tkitbkiεεandtaviββ −−=−= . 

Here the constant A is originating from the initial and final bound state wave functions. 

D( 11 βλ,,ε ) is a parametric differential operator used to generate higher state wave functions. β

and λ  are the orbital exponent of the initial and the final bound state wave functions. 

Taking the Fourier transform of equation (6a) and using integral representation of general three 

denominator integration of Lewis [18], Sinha and Sil [19], 
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Now the complex integration of t2 is converted to real integral [20, 21] which has been 

subdivided into a number of sub-intervals and each sub-interval is integrated numerically using 

Gauss Laguerre quadrature method. Finally a single electron capture cross sections is obtained 

numerically over scattering angles with the Gauss Legendre quadrature method. The orders of 

two dimensional integral are varied until convergence to three decimal places is obtained for the 

total charge transfer cross sections. 

2.3. Results and discussion 

         Total charge transfer cross sections have been obtained by summing over all contributions 

into each shell up to n=3. Variation of total charge transfer cross sections with the incident 

energy of the projectile ion are reported in graphical form for resonant and non resonant collision 

systems in Figures 1-4. Sub-shell distribution of total charge transfer cross sections have been 

displayed in Table I-IV. 

A. Non-resonant reactions 

  In figure 1 we display the present BCCIS-3B results along with available experimental and 

theoretical data for the iso-electronic collision system H+ + He+ and shows good overall 

agreement with the experimental results [12-15] and other theoretical results [2,5,8]. Looking in 

more details reveals that in comparison with the experiments our results are slightly smaller than 

the measurements below 50 keV/amu. We find that the CDW results is about 84% larger at 400 

keV and about 50% lower at 1000 keV. But our results are in good agreement with the results 

obtained by LTDSE-FD [8] method. The results of this reaction are given in Table I. From Table 

I, we see that the 1s cross sections are more significant than the other states. The cross section 

shows the typical dependence on the collision energy with a maximum around 50 keV. For the 

non-resonant collision system He2+ + Li2+, our theoretical data given in Table II are compared 

with only the recent experimental data [16] and the theoretical results [5,8] in figure 2. Here the 

agreement between our results and experiment is very good in the low energy range (less than 60 

keV/amu). Due to the higher charge state of the target, the peak positions of cross sections shift 

towards the higher projectile energies (near almost 80 keV/amu). From this figure 2, we have 
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seen that our results are underestimated compared to the other theoretical results. This may be 

due to the contribution of higher excited states, but the nature of the curve remains same. Here 

the ground state capture cross sections are maximum but less with respect to iso-electronic 

collision system H+ + He+. We note, regarding the importance of various angular momenta, the 

inclusion of 1=l state accounts for the majority of the resulting cross sections at low energies 

and 0=l state at high energies. 

B. Resonant reactions 

 In figure 3 our measured cross sections for He2+ + He+ collisions are plotted against the 

projectile energy together with previous theoretical results [5,6] and measurements [17]. Our 

results are in good agreement with CDW results but not so good with CTMC results [6]. At low 

collision energies, the agreements between the experimental results of Melchart et al [17] with 

our BCCIS-3B results are poor at 50 keV/amu energy. The computed results are given in Table-

III. We find from the table that the major contribution to the cross sections comes from ground 

state as it is a resonating state. Since it is a resonant and charge symmetric system, large cross 

sections would be expected at intermediate collision energies. Here also we find that the 

contributions from n=2 state may not be ignored. Due to non-availability of any experimental 

data, the variation of single electron capture cross sections with projectile energy are only 

compared with the results of Brauning et al [16] which is shown in figure 4. The computed 

results have been displayed in Table IV. From this graph, it is evident that the present computed 

results agree well with the results of Brauning et al [16] above 30 keV/amu energy. The Table IV 

shows the same feature as like He2+ + He+ collision but gives the higher value of cross sections. 

2.4. Conclusions 

 By applying the three body boundary corrected continuum intermediate state (BCCIS-3B) 

approximation to ion-ion collision system, the results obtained are reasonably good in the whole 

energy range 50-2000 keV/amu. The distortions in the final channel related to the Coulomb 

continuum states of the residual target are included. The charged target ion introduces additional 

complications through the inclusion of a continuum state. At intermediate collision energies, 
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large cross sections can be obtained from a resonant and symmetric charge system than non-

resonant and a symmetric charge system. For resonant collision systems differ simply by just one 

greater unit of charge on both the projectile and the target, it is found that the magnitude of cross 

sections will increase. 

TABLE-I. State selective cross sections
lnσ  (in 10

-16
 cm

2
) for charge transfer in H

+
-He

+
 

collisions. The integer in parenthesis indicates the power of ten by which the number has to 

be multiplied. 

Energy 

(keV/amu) 

1s 2s 2p n=2 3s 3p 3d 

30 1.58(-1) 3.37(-3) 7.20(-3) 1.06(-2) 1.56(-4) 9.28(-4) 7.04(-5) 

40 1.81(-1) 3.07(-3) 7.80(-3) 1.09(-2) 1.52(-4) 8.96(-4) 4.83(-5) 

50 2.03(-1) 2.73(-3) 7.31(-3) 1.00(-2) 1.42(-4) 7.98(-4) 3.08(-5) 

60 1.87(-1) 1.55(-3) 6.98(-3) 8.53(-3) 1.10(-4) 3.41(-4) 2.17(-5) 

80 1.50(-1) 1.21(-3) 4.54(-3) 5.75(-3) 8.52(-5) 1.51(-4) 1.45(-5) 

100 1.14(-1) 9.21(-4) 3.30(-3) 4.22(-3) 4.43(-5) 1.00(-4) 1.17(-5) 

200 1.79(-2) 2.71(-4) 5.06(-4) 7.77(-4) 2.00(-5) 7.85(-5) 3.23(-6) 

400 1.87(-3) 5.63(-5) 4.89(-5) 1.05(-4) 1.00(-5) 3.98(-5) 2.08(-7) 

500 8.04(-4) 3.15(-5) 1.04(-5) 4.19(-5) 4.43(-6) 1.27(-5) 6.37(-8) 

800 1.03(-4) 5.00(-6) 9.38(-7) 5.93(-6) 3.39(-7) 4.34(-6) 3.91(-9) 

1000 3.73(-5) 2.14(-6) 2.74(-7) 2.41(-6) 9.91(-8) 1.52(-6) 9.49(-10) 

Continue to Table-I 

Energy 

(keV/amu) 

n=3 Total 

30 1.15(-3) 1.70(-1) 

40 1.10(-3) 1.93(-1) 

50 9.70(-4) 2.14(-1) 
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60 4.70(-4) 1.96(-1) 

80 2.50(-4) 1.56(-1) 

100 1.56(-4) 1.18(-1) 

200 1.00(-4) 1.87(-2) 

400 5.00(-5) 2.02(-3) 

500 1.72(-5) 8.63(-4) 

800 4.68(-6) 1.14(-4) 

1000 1.62(-6) 4.13(-5) 

 

TABLE-II. State selective cross sections 
lnσ (in 10

-16
 cm

2
) for charge transfer in He

2+ 
-Li

2+
 

collisions. The integer in parenthesis indicates the power of ten by which the number has to 

be multiplied. 

Energy 

(keV/amu) 

1s 2s 2p n=2 3s 3p 3d 

30 6.40(-2) 9.20(-3) 1.23(-2) 2.15(-2) 8.13(-3) 1.25(-2) 9.61(-4) 

40 7.56(-2) 1.15(-2) 1.25(-2) 2.40(-2) 1.03(-2) 1.42(-2) 1.22(-3) 

50 1.02(-1) 5.15(-3) 2.80(-2) 3.31(-2) 2.79(-3) 3.79(-3) 3.44(-4) 

60 1.07(-1) 9.96(-3) 1.85(-2) 2.84(-2) 7.41(-3) 9.19(-3) 1.05(-3) 

80 1.46(-1) 1.68(-3) 1.30(-2) 1.46(-2) 7.07(-4) 1.55(-3) 9.61(-5) 

100 1.22(-1) 5.14(-3) 8.21(-3) 1.33(-2) 1.99(-3) 3.11(-3) 1.83(-4) 

200 4.67(-2) 1.73(-3) 1.46(-2) 1.63(-2) 9.95(-4) 6.15(-4) 1.05(-4) 

400 1.29(-2) 9.32(-4) 2.01(-3) 2.94(-3) 8.19(-4) 3.51(-4) 2.06(-5) 

500 8.38(-3) 6.88(-4) 4.39(-4) 1.12(-3) 4.08(-4) 1.64(-4) 3.60(-6) 

800 2.94(-3) 1.34(-4) 9.89(-5) 2.32(-4) 1.36(-4) 5.08(-5) 2.51(-6) 

1000 1.66(-3) 6.23(-5) 3.13(-5) 9.36(-5) 7.69(-5) 2.34(-5) 1.01(-6) 

2000 1.97(-4) 4.76(-6) 3.76(-6) 8.52(-6) 8.98(-6) 1.40(-6) 3.10(-8) 
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Continue to Table-II 

Energy 

(keV/amu) 

n=3 Total 

30 2.15(-2) 1.07(-1) 

40 2.54(-2) 1.25(-1) 

50 6.92(-3) 1.41(-1) 

60 1.76(-2) 1.53(-1) 

80 2.35(-3) 1.63(-1) 

100 5.28(-3) 1.40(-1) 

200 1.71(-3) 6.47(-2) 

400 1.19(-3) 1.70(-2) 

500 5.75(-4) 1.00(-2) 

800 1.89(-4) 3.36(-3) 

1000 1.01(- 4) 1.85(-3) 

2000 1.04(-5) 2.15(-4) 

 

 

TABLE-III. State selective cross sections 
lnσ (in 10

-16
 cm

2
) for charge transfer in He

2+ 
- He

+
 

collisions. The integer in parenthesis indicates the power of ten by which the number has to 

be multiplied. 

Energy 

(keV/amu) 

1s 2s 2p n=2 3s 3p 3d 

30 9.35(-1) 8.40(-2) 3.33(-1) 4.17(-1) 5.83(-2) 1.02(-1) 3.27(-2) 

40 1.11(+0) 6.84(-2) 3.12(-1) 3.80(-1) 1.80(-2) 2.03(-2) 2.44(-3) 

50 1.00(+0) 8.00(-2) 3.30(-1) 4.10(-1) 1.52(-2) 2.00(-2) 4.64(-3) 
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60 9.70(-1) 3.83(-2) 2.72(-1) 3.10(-1) 8.56(-3) 1.23(-2) 1.38(-3) 

80 6.84(-1) 4.36(-2) 2.46(-1) 2.89(-1) 1.04(-2) 1.38(-2) 3.73(-3) 

100 4.93(-1) 4.65(-2) 2.03(-1) 2.49(-1) 1.31(-2) 1.39(-2) 3.28(-3) 

200 1.05(-1) 1.13(-2) 2.71(-2) 3.84(-2) 5.40(-3) 4.20(-3) 4.25(-4) 

400 2.36(-2) 4.67(-3) 2.22(-3) 6.89(-3) 1.23(-3) 8.44(-4) 7.80(-5) 

500 1.26(-2) 1.47(-3) 9.85(-4) 2.45(-3) 6.67(-4) 3.75(-4) 2.89(-5) 

800 2.82(-3) 1.44(-4) 6.73(-5) 2.11(-4) 1.47(-4) 5.51(-5) 2.77(-6) 

1000 1.21(-3) 5.05(-5) 1.69(-5) 6.74(-5) 6.26(-5) 1.92(-5) 7.94(-7) 

2000 5.24(-5) 1.89(-6) 1.02(-6) 2.91(-6) 2.46(-6) 3.82(-7) 8.16(-9) 

 

Continue to Table-III 

Energy 

(keV/amu) 

n=3 Total 

30 1.93(-1) 1.54(+0) 

40 4.07(-2) 1.53(+0) 

50 3.98(-2) 1.45(+0) 

60 2.22(-2) 1.30(+0) 

80 2.79(-2) 1.00(+0) 

100 3.02(-2) 7.72(-1) 

200 1.00(-2) 1.53(-1) 

400 2.15(-3) 3.26(-2) 

500 1.07(-3) 1.61(-2) 

800 2.05(-4) 3.23(-3) 

1000 8.25(-5) 1.35(-3) 

2000 2.85(-6) 5.81(-5) 
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TABLE-IV State selective cross sections 
lnσ  (in 10

-16
 cm

2
) for charge transfer in Li

3+ 
- Li

2+
 

collisions. The integer in parenthesis indicates the power of ten by which the number has to 

be multiplied. 

Energy 

(keV/amu) 

1s 2s 2p n=2 3s 3p 3d 

30 1.35(+0) 1.35(-1) 1.46(-1) 2.81(-1) 3.09(-1) 3.80(-1) 8.02(-2) 

40 1.28(+0) 7.44(-2)  9.36(-2) 1.68(-1) 2.47(-1) 2.39(-1) 5.04(-2) 

50 1.00(+0) 5.30(-2) 1.17(-1) 1.70(-1) 1.34(-1) 1.65(-1) 3.08(-2) 

60 7.94(-1) 4.70(-2) 1.27(-1) 1.74(-1) 8.12(-2) 1.17(-1) 2.21(-2) 

80 4.86(-1) 2.17(-2) 2.02(-1) 2.23(-1) 4.93(-2) 3.51(-2) 9.47(-3) 

100 2.97(-1) 2.40(-2) 2.14(-1) 2.38(-1) 3.85(-2) 4.11(-2) 1.21(-2) 

200 1.22(-1) 1.88(-2) 6.08(-2) 7.96(-2) 5.46(-3) 7.55(-3) 6.92(-4) 

400 4.15(-2) 5.68(-3) 2.29(-2) 2.85(-2) 2.41(-3) 2.24(-3) 3.50(-4) 

500 2.71(-2) 5.48(-3) 1.38(-2) 1.92(-2) 1.99(-3) 1.86(-3) 3.17(-4) 

800 1.03(-2) 3.50(-3) 2.14(-3) 5.64(-3) 8.67(-4) 7.62(-4) 1.15(-4) 

1000 7.21(-3) 1.15(-3) 7.28(-4) 1.87(-3) 3.28(-4) 2.94(-4) 3.18(-5) 

2000 8.68(-4) 2.39(-5) 4.61(-5) 7.00(-5) 3.92(-5) 1.78(-5) 1.06(-6) 

 

Continue to Table-IV 

Energy 

(keV/amu) 

n=3 Total 

30 7.69(-1) 2.40(+0) 

40 5.36(-1) 1.98(+0) 

50 3.29(-1) 1.50(+0) 

60 2.20(-1) 1.18(+0) 
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80 9.38(-2) 8.02(-1) 

100 9.17(-2) 6.26(-1) 

200 1.37(-2) 2.15(-1) 

400 5.00(-3) 7.50(-2) 

500 4.16(-3) 5.04(-2) 

800 1.74(-3) 1.76(-2) 

1000 6.53(-4) 9.73(-3) 

2000 5.80(-5) 9.96(-4) 
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Figure 1. Comparison of the total charge transfer cross sections in H+ + He+ by various theories 

and experiments. Correspondence between each symbol and methods / authors is given in the 

figure. 
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Figure 2. The total charge transfer cross sections in He2+ + Li2+ by various theories and 

experiments. 
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Figure 3. The total charge transfer cross sections in He2+ + He+ by various theories and 

experiments. 
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Figure 4. The total charge transfer cross sections in Li3+ + Li2+ by various theories and 

experiments. 
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3.1. INTRODUCTION 

Single-electron capture by the multiply charged projectiles from multi-electron atoms has 

recently received considerable attention from theoretical [1-23] as well as experimental [24-35] 

points of view due to its fundamental importance and various possibilities of applications in 

plasma physics, astrophysics, and controlled thermo-nuclear fusion research. As to applications, 

single-electron capture from helium atom by partially stripped ions also plays an important role 

in tokamak fusion plasmas [1].  In the development of the theoretical formulation of charge 

transfer processes, Dewangan and Eichler [2] are premier to find that the boundary conditions for 

the transition potential and the scattering wavefunction have to be satisfied properly in first and 

higher order calculations. Any exception to it is sure to generate singular structure of the 

transition amplitude. These characteristic features have been critically analysed by their latter 

works [3,4] and by others [5-7] as well. If either or both of the collision partners are many 

electron systems, the influence of the electron-electron interaction is important on the dynamics 

in the collision phenomena [6]. Since the helium atom is the simplest of many electron target 

where one can assess the importance of electron correlations, its investigation has attracted most 

attention from both the theoretical and experimental works. The role of electron correlation 

during a high energy ion-atom collision was investigated [21-23] by the correlation in the initial 

and final states. There are two kinds of electronic correlations: static and dynamic. Static 

correlations are built into multi-electron bound state wavefunctions. The dynamic correlations 

describe interactions between two electrons in the exit channel. Such type of correlation is one of 

the causes of the transition from the initial to the final state of the four-body system.  In the 

present theoretical investigation, we have focused our attention to determination of electron 

transfer from helium atom by the impact of He2+, Liq+ (q=1-3), C6+,and O8+ projectile ion in the 

energy range of 50 -5000 keV/amu. 

 Cross sections for single-electron capture to the ground state in collisions of protons, 

alpha particles and lithium nuclei with He atoms are calculated at incident energies from 0.025 to 

4 MeV/amu in the independent-electron-approximation (IEA) [8]. The calculations show that 

below 500 keV/amu there are substantial differences with the experimental results. Jain et al [9] 

have studied the sub-shell capture cross sections from helium atoms in collisions with bare ions 
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in the framework of two-center atomic-orbital-(AO) expansion method at high energies and 

compared those findings with experimental results. The results are in good agreement with the 

existing experimental data in the high energy region. With the extension of previous work of 

Belkic et al [10] and Mancev [11] have calculated the single-electron capture cross sections by 

fully stripped projectile ions from helium like atom in the energy range of 50 keV to 10 MeV  

with in the framework of the four-body formalism of continuum distorted wave (CDW-4B) 

method. In this work both static and dynamic correlations have been included through the 

perturbation potentials and the bound state wave function. Computed results are not in 

satisfactory agreement over the whole energy range. Later, Mancev [12] have employed the 

same method to calculate the total cross sections for single electron capture and transfer 

ionization for Li3++He(1s2) collision. In this work, state-selective single electron capture cross 

sections have been displayed in tabular form at a few selective projectile energies. Mancev [13] 

have also developed second order Born distorted wave approximation (BDW) to study the single 

charge transfer in fast symmetric collisions between alpha particles and helium. Recently 

Mancev and Milojevic [14] have applied the four-body boundary-corrected first Born 

approximation (CB1-4B) both in post and prior form to study the single-electron capture cross 

sections from He atom by H+ and He2+ ions respectively. The results so obtained have reasonable 

agreement with the experimental findings except in the low energy region. Under the context, we 

are motivated to study the single charge transfer cross sections from He atom by fully stripped 

(He2+, Li3+, C6+, O8+) ions and partially stripped projectile ions (Li+,Li2+) in the energy range 50 

to 5000 keV/amu. Based on the success of the four-body formalism of the boundary corrected 

continuum intermediate state (BCCIS-4B) approximation [36,37], we are motivated to study the 

above mentioned processes in the framework of BCCIS-4B theory.  

 The organization of the paper is as follows. Sec.II contains the theoretical calculations of 

the problem. Results and discussion are presented in the Sec.III. Finally, conclusions are given in 

Sec.IV. Atomic units have been used throughout the work.  
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3.2. THEORY 

Single-electron capture from a two-electron atom by the impact of projectile ions (He2+, 

Liq+(q=1,2,3), C6+, O8+ ) may be written as  

21 f2Tf1Pi21TP )e,(Z)e,(Z)e,e,(ZZ +→+ ,    (1) 

where ZP and ZT are the nuclear charges of the projectile and the target respectively. e1and e2 are 

two electrons initially bound to the target nucleus and finally one active electron is bound to the 

projectile. The total Hamiltonian of the whole collision system may be written as   

     ffii VHVHH +=+= ,    (2) 

where Hi,f represents Hamiltonian in the entrance and exit channel respectively and Vi,f are the 

corresponding perturbation potentials. In the initial channel, 
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Here e,T and P represent active electron, target atom and projectile ion respectively. R
r

denotes 

the position vector of the projectile (P) relative to the target (T) nucleus. jx
r

and js
r

 (j=1,2) are the 

electron co-ordinates measured from the target and projectile nuclei respectively. iµ , fµ , a and b 

are the reduced masses associated with the relative coordinates TR
r

, PR
r

, jx
r  (j=1,2), and js

r
 

(j=1,2), respectively. The interelectronic co-ordinate is denoted by 212112 xxssr
rrrrv

−=−= . 

The prior form of the scattering amplitude may be written in the form  

    >=< −−
iif

)(
if ψ|V|ψT ,      (3) 

where ( )21i
R.ki

21i x,xe)x,x(ψ T
rrrr rr

ϕ= . ( )21i x,x
rr

ϕ is the product of one-parameter orbitals for the 

initial bound state of helium atom with effective charge Zeff=1.6875. )(
fψ − is the distorted wave in 

the final channel. Here one electron is active and other electron is passive. The passive electron 

plays the role to screen the target ion in the final channel. However the interaction of the active 

electron and the projectile ion with the screened target ion are described by the Coulomb 

continuum wave functions in the final channel. The final state wave function )(
fψ −  is given by   
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In post form the scattering amplitude may be written as  
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iff

)(
if ψ|V|ψT .    (5) 

Here the wavefunction in the final channel is given by  

( ) ( )Pf21ff Rχx,sψ
rrr −= ϕ , 

where ( )21f x,s
rr

ϕ is the final bound state wavefunction which is the product of hydrogen like 

wavefunctions and ( )Pf Rχ
r

−  is the Coulomb distorted wave in the exit channel. Since both the 

target and the projectile are ionic in nature except for HeLi ++  collision, their relative motion 

should be described by Coulomb continuum function ( )Pf Rχ
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− , which satisfies the equation 
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However, in the construction of the above differential equation we have used the asymptotic 

form of the internuclear interaction to take account of the effect of core electron (s) in both the 

target and the projectile. 

Solving this equation, we find  
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is the final wave vector. +

iψ , the Coulomb continuum 

wavefunction in the entrance channel, is given by  
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It is well known [36,37] that the post form of the BCCIS-4B method is suitable for asymmetric 

collision ( ZP> ZT ) and for symmetric collisions, either form of the transition matrix element 

may be used. 

The transition amplitude in the prior and post forms for single capture in the BCCIS-4B method 

may be written as  
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Using integral representation ( ) ( )∫ −−
−= tz1αiαi

11 et1tdt
iπ2

1
z;1α;iF  , the transition amplitude of 

equations (8) and (9) may be written as  
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 3f2i121211 tkitkiεεandγδβ,δβ −−=+== . 

Here the constant A originates from the initial and final bound state wave functions. 

)ε,λ,λ,γ,D(δ 12121 is a parametric differential operator used to generate the excited state wave 

functions. 21 γ,δ and 1λ   are the orbital component of the initial and final bound state wave 

functions. To obtain the perturbation potential term 
2s

1
 in the final channel, the term 

12

rλ

r

e 122−

 in 

equation (13) is replaced by and the parametric differential operator ( )12121 ε,λ,λ,γ,δD   

should be changed accordingly. 

Using the techniques of Fourier transform, Feynman parametric integral and the integral 

representation of three denominator integral of Lewis [38], equation (11) or (13) may be reduced 

following Sinha and Sil [39] as  
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So the transition matrix element given by the equation (10) and (12) may be reduced as  
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The prior form of the transition amplitude contains two-dimensional integrals such as Lewis and 

Feynman, but the post form of the transition amplitude contains three-dimensional integrals such 

as Lewis, Feynman and a complex contour integration. The complex contour integration is 

changed into real integral from 0 to 1 which has been subdivided into several parts and each 

subdivision is integrated using Gauss-Laguerre quadrature method. The Lewis and Feynman 

integrals have been performed numerically by the Gauss-Legendre quadrature method. Finally 

single-electron capture cross sections are obtained numerically over scattering angles with the 

Gauss Legendre quadrature method. Convergence has been tested with an accuracy of 0.1%.  
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3.3. RESULTS AND DISCUSSION  

Total single electron transfer cross sections have been obtained by summing over all 

contributions from individual shells and sub-shell upto n=3 since the results have been found to 

converge within 8%. Variation of single-electron capture cross sections in collisions of different 

projectile ions with helium atoms in the energy range 50-5000 keV/amu are plotted in Figs. 1-6 

respectively using both prior and post forms of BCCIS-4B approximation. Post-prior discrepancy 

has been found to be less than 30% except for Li+ + He interaction below 150 keV/amu. 

However, numerical results for the sub-shell distribution of the total single charge transfer cross 

sections may be obtained on request. 

A. Symmetric collision  

In Fig.1, we have displayed the present results both in post and prior form for symmetric 

collisions of He2+- He as a function of incident projectile energy from 100 to 5000 keV. Our 

computed results are compared with the measurements of Shah and Gilbody [24], Shah et al 

[25], de Castro et al [26], DuBois [27], and the theoretical results of Mancev [11,13,14], and 

Dunseath and Crothers [16]. The present results have good agreement with the experimental 

results of de Castro et al [26] below 2000 keV. It is also evident that the present computed results 

agree well with the experimental results of Shah and Gilbody [24] and DuBois [27] above 300 

keV. CDW-4B results of Mancev [11] are in fair agreement with the experimental results at high 

energies but large variation is observed at low energies. This is expected because CDW 

approximation may not be accurate at lower energies. It is also observed that the present 

computed results agree well with the theoretical results of Dunseath and Crothers [16] using the 

prior form of CDW-IEM approximation using hydrogenic wavefunctions (HCDW), but 

agreement is not satisfactory with the same method using Pluvinage wavefunctions (PCDW) in 

the whole energy range. The BDW results of Mancev [13] underestimate the experimental results 

in the high energy region, which have almost similar energy variation of cross sections with the 

CDW-4B results. However, the results obtained in the CB1-4B method by Mancev and 

Milojevic [14] have good agreement with the experimental findings [24-27] between 150 and 

5000 keV. However, they have calculated the total single electron capture cross section by 
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multiplying a scaling factor (1.202) with ground state capture cross section in order to include 

the contribution from higher excited states. We have observed that the ground state capture is 

dominant. This is expected because of the energy resonance and velocity matching of the active 

electron in the initial and final state. However, it is evident from Fig.1 that the present results 

obtained using post form has superiority over the results from prior form in connection with their 

comparison with experimental observations. This may be due to the fact that dynamic electron 

correlation with certain approximation has been included in the post form where static electron 

correlation has been highly simplified in prior form due to the use of helium wavefunction in the 

independent particle model with frozen core approximation. 

B. Asymmetric collision   

In Fig. 2, we compare our theoretical results in both forms of transition amplitude for 

Li3+- He collision together with a number of theoretical [8,12,17] and experimental results 

[24,28-30]. The present results are seen to be in good agreement with all the measurements 

above 150 keV/amu. However, the present results in post form have good agreement with the 

experimental findings of Shah and Gilbody [24] below 150 keV/amu as well. The reason may be 

due to inclusion of continuum interaction of the active electron with the projectile ion of higher 

charge together with the reasons mentioned earlier. It is also observed that the CDW-4B results 

of Mancev [12] underestimate the experimental results [24, 28-30] as well as present theoretical 

results in the whole energy region. The results of Belkic [17] in the prior and post form of the 

CB1 method using the independent particle model and the Roothan-Hartee-Fock target screening 

have very good agreement with the present results in the energy range 50 keV/amu to 1000 

keV/amu. However the results of Sidorovich et al [8] overestimate the present findings at high 

energies. We have also found that ground state capture cross sections are competitive with those 

from the excited states due to the reasons cited above. Our results for Li2+- He collision in the 

energy range from 50 to 5000 keV/amu are depicted in Fig.3. Present computed results in post 

form are in good agreement with the measurements of Woitke et al [30] and the theoretical 

results of Mancev [18] in the whole energy range. In this case the ground state capture cross 

sections dominate over other states. Here we have used the binding energy screening for the 

partially stripped projectile ions. Due to non-availability of any theoretical data for Li+- 
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Hecollision, the present results in both forms have been compared with the experimental results 

of Woitke et al [30] shown in Fig.4. The present results in prior form are not satisfactory in the 

energy range below 500 keV/amu. Further the present results in post form have good agreement 

with the experimental results of Woitke et al [30] down to 200 keV/amu. However the post-prior 

discrepancy below 150 keV/amu is very high. This may be due to exclusion of many body 

effects in our formulation in such low energy region. Total cross sections for single-electron 

capture for C6+- He collision is shown in Fig.5. The present data in both forms are compared 

with other available measurements [31,32] and theoretical data [9,19,20]. The agreement of the 

present cross sections with the results of Classical Trajectory Monte Carlo (CTMC) [19] and the 

two-center Atomic-orbital expansion [9] results are satisfactory in the whole energy range. 

However the results of Unitarized distorted-wave approximation (UDWA) [20] are higher than 

the present results at 400 keV/amu and 700 keV/amu respectively. Further the present results are 

in good agreement with the experimental results [31,32]. In such case the post-prior discrepancy 

is less than 10%. For O8+-He collision, present computed results in both forms are presented in 

graphical form in Fig.6. We have compared our theoretical results with a number of experimental 

results [31-35] and theoretical results [9,19,20]. It is evident that the present results show good 

agreement with other theoretical results [19,20] below 3000 keV/amu. The present computed 

results are found to be in agreement with the available experimental findings [31,32]. However 

the experimental results of Afrosimov et al [33] underestimate the present results below 1000 

keV/amu to a fair extent. In this case as well the post-prior discrepancy is less than 10%. 

3.4. CONCLUSIONS      

The four-body boundary corrected continuum intermediate state (BCCIS-4B) 

approximation previously employed for double electron capture has been extended to the case of 

single-electron capture at intermediate and high energy collision. The results so obtained are 

reasonably encouraging over the entire range of energy. This may be due to the fact that: (i) the 

continuum state of the active electron with the stronger charge has been taken into account; (ii) 

the scattering wavefunction satisfies the boundary condition; and (iii) the transition potential is 

faster falling than the coulomb potential. Electron correlation effect has been underestimated in 

our formalism. However, for single-electron capture process in an asymmetric collision (ZP> ZT) 
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in a multi-electron environment, the accurate study of correlation effect is important to test the 

validity of the BCCIS-4B approximation. 
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FIG. 1. Total cross sections (in cm2) as a function of the incident energy E (keV) for reaction 

He2+ + He(1s2) → He+ + He+. 

Theory: solid line, present results (post form of BCCIS-4B); short dash-dotted line, present 

results (prior form of BCCIS-4B); dashed line, CDW-4B results of Mancev [11]; dotted line, 

CB1-4B results of Mancev and Milojevic [14]; dash-dotted line, PCDW results of Dunseath and 

Crothers [16]; dash-dot-dotted line, HCDW results of Dunseath and Crothers [16]; dense dotted 

line, BDW results of Mancev [13]. 

Experiments: ■, results of Shah and Gilbody [24]; ●, results of Shah et al [25]; ▲, results of de 

Castro et al [26]; ▼, results of DuBois [27 
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FIG. 2. Total cross sections (in cm2) as a function of the incident energy E (keV/amu) for 

reaction Li3+ + He(1s2) → Li2+ + He+. 

Theory: solid line, present results (post form of BCCIS-4B); dashed line, present results (prior 

form of BCCIS-4B); dotted line, CDW-4B results of Mancev [12]; dash-dotted line, CB1 results 

of Belkic [17]; □, IEA results of Sidorovich et al [8]. 

Experiments: ■, results of Shah and Gilbody [24]; ●, results of Woitke et al [30]; ▲, results of 

Nikolaev et al [28]; ▼, results of Pivovar et al [29]. 
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FIG. 3. Total cross sections (in cm2) as a function of the incident energy E (keV/amu) for 

reaction Li2+ + He(1s2) → Li+ + He+. 

Theory: solid line, present results (post form of BCCIS-4B); dotted line, present results (prior 

form of BCCIS-4B); dashed line, CDW-4B results of Mancev [18].  

Experiment: ■, results of Woitke et al [30]. 
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FIG. 4. Total cross sections (in cm2) as a function of the incident energy E (keV/amu) for 

reaction Li+ + He(1s2) → Li + He+. 

Theory: solid line, present results (Post form of BCCIS-4B); dotted line, present results (Prior 

form of BCCIS-4B).  

Experiment:  ■, results of Woitke et al [30]. 
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FIG. 5. Total cross sections (in cm2) as a function of the incident energy E (keV/amu) for 

reaction C6+ + He(1s2) → C5+ + He+. 

Theory: solid line, present results (post form of BCCIS-4B); dashed line, present results (prior 

form of BCCIS-4B); ○, Atomic-orbital expansion results of Jain et al [9]; ∆, UDWA results of 

Suzuki et al [20]; ∇ , CTMC results of Olson [19].  

Experiments:  ■, results of Dillingham et al [31]; ●, results of Guffey et al [32]. 
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FIG. 6. Total cross sections (in cm2) as a function of the incident energy E (keV/amu) for 

reaction O8+ + He(1s2) → O7+ + He+. 

Theory: solid line, present results (post form of BCCIS-4B); dotted line, present results (prior 

form of BCCIS-4B); dashed line, atomic-orbital results of Jain et al [9]; ○, UDWA results of 

Suzuki et al [20];  ∆, CTMC results of Olson [19].  

Experiments:  ■, results of Dillingham et al [31];  ●, results of Guffey et al [32]; ▼, results of 

Macdonald and Martin [34]; ▲, results of Afrosimov et al [33];  *, results of Hippler et al [35]. 
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4.1. INTRODUCTION 

Ion-atom/ion collisions and in particular electron transfer processes have been 

investigated intensely over many years. This research is not only motivated by the quest for a 

better understanding of the fundamental few-body dynamics, but also it has practical 

implications to applied fields, such as plasma physics and fusion research. For a long time, 

theoretical and experimental efforts have been concentrated on the energy dependence of total 

cross sections (TCSs). Charge transfer cross sections in collisions of fully stripped projectiles 

with hydrogen like ion have been studied in the framework of different three-body models viz 

the continuum distorted wave (CDW) approximation [1], Basic Generator method (BGM) [2-4], 

Lattice time-dependent Schrödinger equation (LTDSE) and the atomic orbital close coupling 

(AOCC) method [5] and the boundary corrected continuum intermediate state (BCCIS) 

approximation [6]. However, theoretical calculations based on four-body models are more 

detailed and exhaustive in nature. Such investigations in collisions of fully stripped projectile 

ions with helium-like ions include the Coulomb-Born (CB) and a modified Coulomb-Born 

(MCB) approximation of Sinha et al [7], the CDW approximation with independent-event model 

of Dunseath and Crothers [8], CDW-4B method of Belkic et al [9] and Mancev [10,11], second 

order Born distorted wave (BDW) method [12,13], continuum distorted wave-Born initial state 

(CDW-BIS) and Born final state (BFS) method of Mancev [14,15], continuum distorted-wave 

eikonal-initial state (CDW-EIS) method of Pedlow et al [16], the boundary-corrected first Born 

approximation (CB1-4B) of Mancev and Milojevic [17] and recently, the four-body formalism of 

boundary corrected continuum intermediate state (BCCIS-4B) approximation by Samanta et al 

[18]. In the present theoretical investigation, we have mainly focused our attention to determine 

the single-electron capture cross sections from helium like ion by the impact of proton in the 

incident energy range between 30 and 1000 keV. 

Working within the framework of four-body distorted wave formalism, various 

approximations can be obtained by choosing different distortion potentials and distorted-wave 

functions in the entrance and exit channels. Sinha et al [7] calculated the electron-capture from 

the helium like ions (Li+,Be2+,B3+,C4+ and O6+) by the impact of protons using the four-body 

formalism of Coulomb-Born (CB) approximation in prior and post form in the energy range 20-
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1000 keV. The calculations show that, there are substantial disagreement with the existing 

experimental results for p-Li+(1s) collision. Total cross sections for single-electron transfer from 

helium like atomic systems by bare projectiles have been studied by Mancev [10] in the 

framework of CDW-4B approximation in the energy range of 50 keV to 10,000 keV. Total cross 

sections are compared with the available experimental data. Computed results underestimate the 

available experimental findings for p-Li+ collision. The problem of single charge transfer in 

collisions of H+ ions with Li+ target ions has been investigated by Mancev [14] in the framework 

of CDW-BIS and CDW-BFS approximations in the energy range of 50-2000 keV/amu. It has 

been found that the CDW-BIS approximation overestimates the available experimental results at 

low energy region whereas the CDW-BFS results underestimate the same. At higher impact 

energies both approximations have yielded nearly identical cross sections. In this context, we are 

motivated to study the single-charge transfer cross sections for p-Li+ collision in the energy 

range of 30-1000 keV. Based on the success of BCCIS approximation in ion-atom collisions in 

the framework of 4-body [18-20] formalism and ion-ion collision in the framework of three-body 

formalism [6], we have studied the above mentioned process in the framework of BCCIS-4B 

theory.  

The organization of this paper is as follows. Theoretical formulation has been described 

in Sec. II. Results and discussion are presented in Sec. III. Finally, in Sec. IV conclusions are 

given. Atomic units have been used throughout. 

 

4.2. THEORY 

 Single-electron capture from helium like ions (Li+,Be2+,B3+) by the impact of proton may 

be written as  
21 f2Tf1Pi21TP )e,(Z)e,(Z)e,e,(ZZ +→+ ,    (1) 

where ZP, ZT are the projectile (P) and target (T) charges, respectively. The total Hamiltonian for 

the collision system may be written as  

H = Hi + Vi = Hf + Vf  ,    (2) 
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where Hi (Hf) represents the entrance (exit) channel Hamiltonian and Vi (Vf) is the corresponding 

perturbation potentials respectively. HereHi (Hf) and Vi (Vf) may be written as  
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Here e, T and P represent active electron, target ion and projectile ion respectively. Let R
r

 be the 

position vector of the projectile ion (P) relative to the target (T) nucleus. In the entrance channel, 

it is convenient to introduce TR
r

 as the relative vector of the projectile with respect to the center 

of mass of i21T )e,e,(Z . Symmetrically, pR
r

 be the position vector of the center of mass of 

1f1P )e,(Z relative to
2f2T )e,(Z in the exit channel. 2,1S

r
and 2,1x

r
 have been labeled as the position 

vectors of the electrons 1,2e  relative to PZ  and TZ  respectively. Hence 1,2r
v

 may be given by 

1,2211,2211,2 xxxsssr
rrrrrrv

=−==−= . The unperturbed channel state iψ  may be defined by 

0ψ)E(H iii =− with Ti R.ki
21ii e)x,x(ψ

rrrr
ϕ= . Here )x,x( 21i

rr
ϕ  represents the two electron bound 

state wavefunction of the helium like atomic system i21T )e,e,(Z . Here ik
r

 is the initial wave 

vector and Ei is the binding energy of the two electron target. Due to the presence of the 

asymptotic Coulomb repulsion, between the incoming projectile ion and the screened target 
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nucleus, the wavefunction in the initial channel iψ  is distorted and the distorted wave function is 

given by  

    )R(χ)x,x(ψ Ti21ii

rrr += ϕ     (5) 

where )R(χ Ti

r
+  is the Coulomb continuum function which satisfies the equation  
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The solution of the eigen value problem for )R(χ Ti

r
+  is given by  
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where  
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−
= . 

It is well known [6,18-20] that the prior form of the BCCIS method is suitable for asymmetric 

collision (ZT>ZP). However, for symmetric collisions, either form of the transition matrix 

element may be used. Here we have calculated the transition amplitude in prior form. The prior 

form of the transition amplitude in the BCCIS-4B approximation can be written as   

>>≈<=< −−
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We write the final state wavefunction BCCIS
fψ  in BCCIS-4B approximation as  
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Here ( )12f , sx
rr

ϕ  is the final bound state wavefunction which is the product of hydrogen like 

wavefunctions and fk
r

 is the final wave vector. 

 The transition amplitude in the prior form for the single-electron capture in the BCCIS-

4B method can be written as  
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where 
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In the case of a heavy particle collision, it has been shown [21] that  
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Using the integral representation of confluent hypergeometric function, the transition amplitude 

of equation (10) may be written as  
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where J and )λ,λ,ε,γ,δ,D(δ 211221  may be written as  
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Here the constant C′  originates from the initial and final bound state wavefunctions of helium 

like ion. The form of ε,β,β 21  may be written respectively as, 

3i2f12221f11 tkitbkiεεandγδβ,tviδβ −−=+=−= .  

)λ,λ,ε,γ,δ,D(δ 211221 is the appropriate parametric differential operator used to generate the 

wavefunctions of the excited state. 221 γ,δ,δ and 1λ  are the orbital components of the initial and 

final bound-state wavefunctions. Taking the Fourier transform of terms involving x1, x2, s1, s2 

and R and using the properties of delta function, J may be reduced to the following form 
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Using the Feynmann parametric integral such as 
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Lewis integral [22], we can express the final form as    
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Applying Cauchy’s residue theorem, the complex contour integration of equation (15) may be 

calculated to obtain a general term in the form  
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Finally, the total cross section read dΩT
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where dΩ  is the solid angle around ik
r

. 

The three-dimensional integral comprises Lewis, Feynman and one complex contour integration. 

Both the Lewis and the Feynman integrals have been evaluated numerically by the use of 64-

point Gauss Legendre quadrature method. The complex contour integration is transformed into a 

real one dimensional integral [23] from 0 to 1 which has been sub-divided into several parts and 

each sub-division is integrated using 46-point Gauss-Laguerre quadrature method. Finally, 

integration over scattering angles has been performed with 54-point Gauss-Legendre quadrature 

method. Convergence has been tested with the accuracy of 0.1%.  

4.3. RESULTS AND DISCUSSION 

  The variation of single-electron capture cross sections of ground state helium like ion by 

the impact of proton as a function of the incident projectile energy ranging from 30 to 1000 keV 

is shown in Figs.1-4, respectively.  
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 In Fig.1, we have presented the calculated single-electron capture cross sections for p-Li+ 

collision in the energy range 30-1000 keV. Our data has been compared with the measurements 

of Sewell et al [25] and the theoretical results of Mancev [10,14], Sinha et al [7], and Ermolaev 

et al [24]. The present results have excellent agreement with the experimental results of Sewell et 

al [25] in the whole energy range. The CDW-4B results of Mancev [10] are in fair agreement 

with the present results at high energies but agreement is not satisfactory in the low energy 

range. This is because CDW approximate may not be accurate at low energies. The results 

obtained in the CB method calculated by Sinha et al [7] underestimate the present findings above 

40 keV. The calculated results obtained from the modified Coulomb Born (MCB) method [7] 

underestimate the present results in the whole energy range. The CDW-BFS results of Mancev 

[14] overestimate the experimental results [25] as well as present theoretical results below 150 

keV, but the results of Mancev [14] in the form of the CDW-BIS method have discrepancies 

with the present results in the energy below 500 keV. However, the couple-state results of 

Ermolaev et al [24] have large variation with the present results in the whole energy range. Due 

to non-availability of any experimental data, the present calculated cross sections for p-Be2+ 

collision is compared with other available theoretical results [7] in Fig.2. From this graph, it is 

evident that the present computed results agree favourably with the CB results of Sinha et al [7] 

above 200 keV energy. This is expected because the CB approximation is valid only in the high 

energy range. However, large variation of cross sections has been found between the present 

results and MCB results below 400 keV region. The cross sections for single-electron capture by 

fast protons from the target ions B3+ and C4+ are shown in Fig. 3 and Fig. 4 respectively. Both the 

figures have almost similar trend of energy variation of cross sections with the present BCCIS-

4B results. From Figures 1-4, we observe that the peak position of cross sections shifts towards 

the higher projectile energies due to the higher charge state of the target ion. Same feature have 

been shown in our previous work of three body ion-ion collision [6]. The curves corresponding 

to the higher charged target ions tend to bend towards the lower energy side and this bending is 

more prominent for higher charge state of the target ions which was also observed in the work of 

Mukherjee and Sil [1]. We have found that ground-state capture is dominant for all such type of 

non-resonant reactions. This may be explained in terms of the near-resonance of energy and 

velocity matching of the active electron in the initial and final states. 
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4.4. CONCLUSIONS    

 In the framework of four-body boundary corrected continuum intermediate state (BCCIS-

4B) approximation, the single-electron capture cross sections in collision of proton with helium 

like ion (Li+) are well reproduced with the experimental findings in the collision energy range of 

30-1000 keV. The energy dependence of the cross sections on the charge state of the target ion in 

four-body collision have the same trend of variation like those of ion-ion collision in three-body 

formalism. The reasons for such success are the following: (i) the continuum state of active 

electron has been taken into account properly; (ii) the boundary condition for the scattering 

wavefunction has also been satisfied; and (iii) the potential is faster falling than the Coulomb 

potential. It may be pointed out that in such a formulation, the dynamic correlation of the active 

electrons is absent. However more accurate experimental investigations are necessary for ion-ion 

interactions over a wide range of energies both for the development of refined theory and their 

applications in other branches of physics. 
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Figure 1.  Cross sections (in cm2) as a function of the incident energy E (keV) for reaction H+ + 

Li+ →H + Li2+. 

Theory: solid line with open circle, present results (prior form of BCCIS-4B); dashed line, 

CDW-4B results of Mancev [10]; dotted line, CB results (prior form) of Sinha et al [7]; dash- 

dotted  line, MCB results of Sinha et al [7]; dash-dot-dotted line, couple-state results Ermolaev et 

al [24]; ∆, CDW-BFS results of Mancev [14]; * , CDW-BIS results of Mancev [14].  

Experiment: ■, results of Sewell et al [25]. 
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Figure 2.  Cross sections (in cm2) as a function of the incident energy E (keV) for reaction H+ + 

Be2+ →H + Be3+. 

Theory: solid line with open circle, present results (prior form of BCCIS-4B); dashed line, CB 

results of Sinha et al [7]; dotted line, MCB results of Sinha et al [7]. 
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Figure 3.  Cross sections (in cm2) as a function of the incident energy E (keV) for reaction H+ + 

B3+ →H + B4+. 

Theory: solid line with open circle, present results (prior form of BCCIS-4B); dashed line, CB 

results of Sinha et al [7]; dotted line, MCB results of Sinha et al [7]. 
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Figure 4.  Cross sections (in cm2) as a function of the incident energy E (keV) for reaction H+ + 

C4+ →H + C5+. 

Theory: solid line with open circle, present results (prior form of BCCIS-4B); dashed line, CB 

results of Sinha et al [7]; dotted line, MCB results of Sinha et al [7]. 
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5.1. INTRODUCTION 

The theoretical investigation of electron capture in collision between bare ions and two electron 

or multi-electron targets is a difficult task and in practice, application of many-body collision 

theory involves laborious calculations. Most of the calculations are simplified by a model where 

one captured electron is active and other non-captured electron(s) are being passive. This 

approximation is called frozen core approximation. The net result of such an approximation is a 

reduction of the many-body problem to a three-body problem. Such approximations have been 

developed. During the last few years, much attention has been given in developing the simple 

four-body collision problem of the basic single charge exchange between protons and helium 

atoms. The theoretical descriptions of these processes are very complicated in such reaction. The 

influence of electron-electron interaction is important to study the dynamics in the collision 

phenomena. Two types of correlations occur in such phenomena. One is static correlation and 

other is dynamic correlation. The static correlation arises from the Coulomb interaction between 

the two electrons in the heliumlike atomic system before the collision takes place. But the 

dynamic collision occurs during the collision. Such correlations are one of the causes of 

transition from the initial state to the final state. For a long time, theoretical [1-24] and 

experimental [25-40] efforts concentrated on the energy dependence of total cross sections 

(TCSs) as well as fully differential cross sections (DCSs). Different theories such as the Classical 

Trajectory Monte-Carlo (CTMC) method [9], the couple-state [12], the four-body formalism of 

continuum distorted wave (CDW-4B) [13,14], the Born distorted wave (BDW-4B) [15,16], the 

continuum distorted wave- eikonal initial state (CDW-EIS) [18], the continuum distorted wave 

Born final state (CDW-BFS) and the continuum distorted wave Born initial state (CDW-BIS) 

[19,20], the basic generator method (BGM) [21,22], the boundary-corrected first Born 

approximation (CB1-4B) [23] has been developed to study the single-electron capture by a fast 

bare ion in helium. In this paper, we have studied the single-electron capture from helium by fast 

protons in the energy range 20-11000 keV. We also report the state-selective differential cross 

sections for such collision at different projectile energies. 

        Cross sections for single-electron capture in collision of H+ and He2+ projectile ions with 

helium atoms are calculated by Dunseath and Crothers in the framework of CDW approximation 
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at incident energies from 100 to 1600 keV/amu [11]. In this calculation, the effects of electron 

correlation in the helium atom have been explicitly accounted by the use of correlated Pluvinage 

wavefunction. The calculation shows that above 100 keV/amu, the computed results are not in 

satisfactory agreement. Belkic et al [13] and Mancev [14] have calculated the cross sections for 

single-electron capture from helium like atom by the impact of projectile bare ions in the energy 

range of 20 keV to 20 MeV and 50 keV to 10 MeV respectively within the framework of CDW-

4B method. In this calculation, the dynamic correlation has been taken into account through the 

perturbation potential. The computed results are in good agreement with all the available 

experimental results from energy range 70 keV to 11 Mev. Later, Mancev himself and separately 

with his collaborators [15,16] have employed successfully the BDW-4B approximation to study 

different properties of single-electron capture in H+-He and He2+-He collisions in the high energy 

region. They have also calculated the differential cross sections at different impact energies but 

there are substantial differences with the experimental results [16]. Generalization of the 

continuum distorted wave eikonal initial state (CDW-EIS) method has been developed by 

Abufager et al [18] to study the single-electron capture from the K-shell of He, Ne and Ar noble 

gases by the impact of bare ions. The computed results have reasonable agreement with the 

experimental results only for Ne target by the impact of H+, He2+ and Li3+ projectile ions but not 

satisfactory for He and Ar targets. Mancev [19,20] has applied the four-body formalism of 

CDW-BIS and CDW-BFS approximations to study the different properties of single-capture 

from helium-like atomic systems by bare projectiles in the wide range of energies, though all the 

calculations are confined to ground state capture only. However, the obtained total cross sections 

are larger than the measured values. The electron dynamics in H+-He and He2+-He collisions 

have been investigated using the two-centre basis generator method (BGM) [21,22]. The 

calculations are based on the independent-electron-model and the eikonal approximation. In this 

paper angular-differential cross sections for single and double transfer into ground state and 

singly excited state have also been shown. The computed differential cross section results are not 

in satisfactory agreement at large scattering angles for all projectile energies. Recently, Mancev 

and Milojevic [23] have investigated the single-electron capture cross sections from He atom by 

fast protons and α -particles by means of the CB1-4B method both in post and prior form. The 

results so obtained have reasonable agreement with the experimental findings except in the low 
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energy range. Viewing on the success of four-body formalism of boundary corrected continuum 

intermediate state (BCCIS-4B) approximation [24], we are motivated to study the above 

mentioned process in the framework of BCCIS-4B theory at impact energies 20-11000 keV. 

The organization of the paper is as follows. Section 2 contains the theoretical formulation 

of the problem. Results and discussion are presented in section 3. Finally in section 4 

conclusions are given. Atomic units have been used throughout the work. 

5.2. THEORY 

 The single-electron capture from helium atom by proton impact may be represented by  

    
21 f2Tf1Pi21TP )e,(Z)e,(Z)e,e,(ZZ +→+ ,   (1) 

where ZP and ZT are, respectively, the nuclear charges of the projectile and the target. e1and e2 

are the two electrons initially bound to the target nucleus and finally one electron is captured to 

the projectile. 1,2s
r

and 1,2x
r

 have been leveled as the position vectors of the electrons 2,1e relative 

to PZ  and TZ , respectively. The inter-electronic coordinate is denoted by 212112 xxssr
rrrrv

−=−= . 

R denotes the position vector of the projectile (P) relative to target (T) nucleus. The transition 

amplitude in the prior and post forms for single-electron capture in the BCCIS-4B method may 

be written as  
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ϕ is the product of one-parameter orbitals for the initial bound state of helium atom with 

effective charge Zeff=1.6875 and ( )21f x,s
rr

ϕ is the final bound state wavefunction which is the 

product of hydrogen like wavefunctions.   

Using integral representation of the hypergeometric function 

( ) ( )∫ −−
−= tz1αiαi

11 et1tdt
iπ2

1
z;1α;iF , the technique of Fourier transform, Feynman parametric 

integral, and the integral representation of three denominator integral of Lewis [41] respectively, 
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Here the constant C originates from the initial and final bound state wavefunctions. 

)ε,λ,λ,γ,D(δ 12121 is the appropriate parametric differential operator used to generate the excited 

state wavefunctions. 1δ , 2γ and 1λ  are the orbital component of the initial and final bound state 

wavefunctions. Now the complex integrations of equation (6) may be evaluated by applying 

Cauchy’s residue theorem to obtain a general term in the form as  

( ) ( ) 
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where   P=BD-AC, Q=(A+B)(A+D). 

We see that the equation (4) contains two dimensional integrals such as Lewis and Feynman, but 

the equation (5) contains three dimensional integrals such as Lewis, Feynman and a complex 

contour integration of variable t3. The Lewis integral with infinite upper limit and Feynman 

integral from 0 to 1 have been calculated numerically by the 40-point and 46-point Gauss-

Legendre quadrature method, respectively with suitable transformations. The complex contour 

integration of variable t3 is converted into a real integral [42] from 0 to 1 which has been divided 

into a number of sub intervals and each of the sub intervals has been integrated numerically by 

the 42-point Gauss-Laguerre quadrature method. Finally single charge transfer cross section is 

obtained by numerical integration over scattering angles. However, it may be mentioned that 

cross sections have finally been evaluated with an accuracy of 0.1%. 

5.3. RESULTS AND DISCUSSION 

 We have calculated the single-electron capture cross sections for collisions of protons 

with He atoms using both prior and post forms of BCCIS-4B approximation in the energy range 

20-11000 keV. Total charge transfer cross sections have been obtained by summing over all 

contributions from individual shells and sub-shell upto n=2. Variation of total capture cross 
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sections (TCSs) with incident energy of the projectile ion are reported in graphical form in figure 

1(a) and figure 1(b) and are also displayed in table 1. Theoretical results for differential cross 

sections (DCSs) are shown in figures 2(a) – 2(d), respectively at impact energies 30, 50, 100 and 

293 keV. Lastly, DCSs into n=2 shell are also plotted in figure 2(e) at impact energies 60, 100 

and 300 keV, respectively. The results for DCSs are given in table 2 and table 3.  

In figure 1(a), we have also presented the calculated total single-electron capture cross 

sections both in prior and post form of BCCIS-4B method as a function of incident projectile 

energy from 20 to 11000 keV and compared only with the CDW-4B results of Belkic et al [13] 

where the dynamic correlation have been taken through the perturbation potential. The obtained 

total cross sections are found to be in excellent agreement with the results of Belkic et al [13] 

above 60 keV energy.  The total cross section as a function of incident projectile energy for 

single-capture from helium by proton impact is displayed in figure 1(b) in the same energy 

range. The present computed results are compared with the experimental measurements of Shah 

and Gilbody [31], Shah et al [32], Welsh et al [27], Rudd et al [30], Allison [25], Horsdal-

Pedersen et al [39], Schwab et al [40] and the theoretical results of Mancev and Milojevic [23], 

Mancev et al [16], Zapukhlyak et al [21], Schultz and Olson [9] and Winter [12]. The present 

numerical results obtained from post form are in excellent agreement with the experimental 

results in the whole energy region. We also find from table 1 that the post-prior discrepancy in 

the BCCIS-4B method is well within 20% in the entire energy range except from 400-1000 keV. 

Here we may also notice that the computed results agree favorably with the theoretical results of 

Zapukhlyak et al [21] using BGM calculation except at energy 30 keV. The theoretical results of 

Mancev and Milojevic [23] using the CB1-4B approximation overestimates the observed cross 

sections in the whole energy range. The results obtained from BDW-4B model of Mancev et al 

[16] have reasonable agreement with the present results above 80 keV. The CTMC results of 

Schultz and Olson [9] are not in fair agreement with the present results because classical 

treatment of a two-electron atom may not be very accurate. We have observed that the ground 

state capture cross sections dominate over other states. This is expected because of near energy 

resonance and velocity matching of the active electron in the initial and final state.  However, it 

is evident from figure 1(a) and figure 1(b) that the present numerical results obtained from post 

form have superiority over the results from prior form in the whole energy range. This might 
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mean that the dynamic electron correlations which are connected in post form in our calculation 

play a very important role, especially at intermediate to high energies. Similar conclusion has 

been previously drawn by Belkic et al in Ref. [13]. The differential single-electron capture cross 

sections in post results of BCCIS-4B method are shown in figure 2(a) at incident energy 30 keV 

and compared with other theoretical results [29] obtained by the two-state two-centre atomic 

expansion method in the eikonal approximation and experimental results of Martin et al [29]. 

The present computed results show overall good agreement in shape and in absolute height with 

the experimental data in the wide range of scattering angles. However, it may be seen that the 

theoretical results obtained by the eikonal approximation [29] underestimate the present results 

from the scattering angles 0 to 1 mrad. Mancev et al [16] using BDW-4B method and 

Zapukhlyak et al [21] using BGM has also calculated the DCS at 50 keV energy and their results 

have been compared with our results which are shown in figure 2(b). It may be seen from figure 

2(b) that the present results have good agreement with the measurements of Martin et al [29] and 

Schulz et al [36]. However, results from the BDW-4B method of Mancev et al [16] overestimate 

the present theoretical data at larger scattering angles (above 0.75 mrad) and the results from the 

BGM of Zapukhlyak et al [21] underestimate the present results at smaller scattering angles 

(below 1.25 mrad). The present computed results for the DCS at 100 keV are shown in figure 

2(c). The two experimental findings [29,38] are depicted in the same figure. The cross sections 

of the BCCIS-4B approximation are seen to be in very good agreement with the experimental 

findings from the scattering angle of approximately 0.3 mrad to the 1.5 mrad. At smaller 

scattering angle (below 0.3 mrad) we find the present numerical results are not in satisfactory 

agreement with two sets of experimental findings [29,38] and other theoretical results [16,21,29]. 

In figure 2(d), we display the present results along with other available experimental [16,28] and 

theoretical data [16] for DCS at 293 keV. The present results are seen to be in fair agreement 

with all the measurements for the scattering angle less than 1.5 mrad. It is evident from this 

figure, a discrepancy occur between the cross section computed by means of the BCCIS-4B 

method and BDW-4B except in the large scattering angles. The results of DCSs for different 

projectile energies are given in table 2. DCSs for single capture into first excited state (n=2) in 

the p-He collision system is shown in figure 2(e) and numerical results are reported in table 3 at 

projectile energies 60, 100 and 300 keV respectively. We compare our results with the 
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theoretical results of BGM [22] and the experimental measurement [35]. The agreement is also 

satisfactory. However, single capture processes in the p-He system are described fairly well by 

our theory. This provides further evidence of the role of electron-correlation effects. 

5.4. CONCLUSIONS 

 We have calculated the total single-electron capture cross sections as well as angular 

differential cross sections for one electron processes in p-He collisions within the framework of 

BCCIS-4B approximation both in prior and post form at intermediate to high energies. The 

obtained cross sections are found to be in very good agreement with the available experimental 

data. The essence of the method lies in the fact that the total scattering wavefunction satisfies the 

proper boundary conditions; the continuum state of active electron with the stronger charge are 

taken into account, and the transition potential is faster falling than the Coulomb potential. The 

dynamic electron correlation with certain approximation has been included in our calculation.  
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Table 1. Total cross sections (in 10 
-16

 cm
2
) as a function of incident energy E (keV) for 

single-charge transfer in H
+
 + He (1s

2
). The displayed results are obtained by means of the 

BCCIS-4B approximation. The integer in parenthesis indicates the power of ten by which 

the number has to be multiplied. 

 

Energy 

(keV) 

−
iifQ  

+
ifQ  Energy 

(keV) 

−
iifQ  

+
ifQ  

20 2.50(+0) 2.10(+0) 500 6.60(-4) 8.50(-4) 

30 2.01(+0) 1.90(+0) 600 2.71(-4) 3.80(-4) 

40 1.51(+0) 1.47(+0) 700 1.29(-4) 1.90(-4) 

50 1.20(+0) 1.12(+0) 800 6.71(-5) 9.81(-5) 

60 9.10(-1) 8.97(-1) 900 3.63(-5) 5.30(-5) 

70 6.90(-1) 6.78(-1) 1000 2.20(-5) 3.31(-5) 

80 5.40(-1) 5.32(-1) 2000 6.19(-7) 7.00(-7) 

90 4.11(-1) 3.93(-1) 3000 8.40(-8) 9.00(-8) 

100 3.13(-1) 2.88(-1) 4000 1.81(-8) 2.10(-8) 

150 8.76(-2) 8.68(-2) 5000 5.60(-9) 6.00(-9) 

200 3.22(-2) 3.50(-2) 8000 3.40(-10) 4.00(-10) 

300 6.24(-3) 7.82(-3) 10000 9.82(-11) 1.11(-10) 

400 1.80(-3) 2.50(-3) 11000 5.00(-11) 6.00(-11) 
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Table 2.  Differential cross sections (DCSs) (cm
2
/sr) into ground state as a function of the 

scattering angle θ (mrad) at the incident energies E= 30, 50, 100 and 293 keV respectively 

for the single-electron capture cross sections in H
+
 + He (1s

2
) collisions. The numbers in the 

brackets denote multiplicative powers of ten. 

Scattering 

angle θ 

(mrad) 

Incident energies E in keV (post) 

30 50 100 293 

0.0000 4.91(-10) 7.53(-10) 4.82(-11) 7.60(-12) 

0.0667 4.28(-10) 5.65(-10) 4.60(-11) 6.35(-12) 

0.1333 3.40(-10) 3.98(-10) 3.92(-11) 4.08(-12) 

0.2000 2.69(-10) 2.51(-10) 3.12(-11) 2.11(-12) 

0.2667 2.13(-10) 1.63(-10) 2.30(-11) 9.62(-13) 

0.3333 1.72(-10) 1.04(-10) 1.61(-11) 4.06(-13) 

0.4000 1.41(-10) 7.20(-11) 1.08(-11) 1.71(-13) 

0.4667 9.72(-11) 4.72(-11) 7.03(-12) 7.20(-14) 

0.5333 6.67(-11) 2.90(-11) 4.44(-12) 3.48(-14) 

0.6000 4.59(-11) 1.67(-11) 2.76(-12) 2.18(-14) 

0.6670 2.96(-11) 9.07(-12) 1.79(-12) 1.63(-14) 

0.7333 2.05(-11) 5.64(-12) 1.16(-12) 1.14(-14) 

0.8000 1.47(-11) 3.92(-12) 9.17(-13) 9.30(-15) 

0.8667 1.03(-11) 2.91(-12) 7.37(-13) 7.80(-15) 

0.9333 7.48(-12) 2.54(-12) 6.36(-13) 6.30(-15) 

1.0000 5.85(-12) 2.21(-12) 5.31(-13) 5.10(-15) 

1.0667 4.74(-12) 1.95(-12) 4.05(-13) 4.40(-15) 

1.1333 3.85(-12) 1.71(-12) 3.14(-13) 3.70(-15) 

1.2000 3.39(-12) 1.48(-12) 2.49(-13) 3.00(-15) 

1.2667 3.20(-12) 1.27(-12) 1.93(-13) 2.50(-15) 

1.3333 2.79(-12) 1.10(-12) 1.64(-13) 2.00(-15) 
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1.4000 2.59(-12) 9.50(-13) 1.38(-13) 1.70(-15) 

1.4667 2.35(-12) 8.60(-13) 1.15(-13) 1.40(-15) 

1.5333 2.08(-12) 7.70(-13) 9.60(-14) 1.10(-15) 

1.6000 1.95(-12) 6.90(-13) 8.10(-14) 9.80(-16) 

1.6667 1.87(-12) 6.10(-13) 7.00(-14) 8.00(-16) 

1.7333 1.81(-12) 5.30(-13) 6.10(-14) 7.00(-16) 

1.8000 1.75(-12) 4.70(-13) 5.20(-14) 6.00(-16) 

1.8667 1.68(-12) 4.20(-13) 4.30(-14) 5.00(-16) 

1.9333 1.47(-12) 3.70(-13) 3.60(-14) 4.30(-16) 

2.0000 1.27(-12) 3.20(-13) 2.80(-14) 3.70(-16) 

 

Table 3.  Differential cross sections (DCSs) (cm
2
/sr) into excited states (n ≥ 2) as a function 

of the scattering angle θ (mrad) at the incident energies E= 60, 100 and 300 keV 

respectively for the single-electron capture cross sections in H
+
 + He (1s

2
) collisions. The 

numbers in the brackets denote multiplicative powers of ten. 

Scattering angle θ 

(mrad) 

Incident energies E in keV (post) 

60 100 300 

0.0000 3.44(-11) 2.87(-13) 4.08(-18) 

0.0667 3.21(-11) 2.57(-13) 2.91(-18) 

0.1333 2.76(-11) 2.05(-13) 1.79(-18) 

0.2000 2.18(-11) 1.44(-13) 8.98(-19) 

0.2667 1.58(-11) 9.18(-14) 3.97(-19) 

0.3333 1.08(-11) 5.40(-14) 6.27(-19) 

0.4000 7.12(-12) 3.03(-14) 6.67(-20) 

0.4667 4.49(-12) 1.68(-14) 2.77(-20) 

0.5333 2.82(-12) 9.31(-15) 1.13(-20) 

0.6000 1.75(-12) 5.28(-15) 5.45(-21) 
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0.6670 1.10(-12) 3.02(-15) 2.66(-21) 

0.7333 7.13(-13) 1.88(-15) 1.53(-21) 

0.8000 4.83(-13) 1.25(-15) 9.93(-22) 

0.8667 3.43(-13) 8.84(-16) 7.21(-22) 

0.9333 2.57(-13) 6.66(-16) 5.68(-22) 

1.0000 1.98(-13) 5.30(-16) 4.58(-22) 

1.0667 1.68(-13) 4.45(-16) 3.73(-22) 

1.1333 1.43(-13) 3.69(-16) 3.14(-22) 

1.2000 1.25(-13) 3.20(-16) 2.62(-22) 

1.2667 1.11(-13) 2.81(-16) 2.23(-22) 

1.3333 1.00(-13) 2.49(-16) 1.86(-22) 

1.4000 9.10(-14) 2.20(-16) 1.61(-22) 

1.4667 8.20(-14) 1.94(-16) 1.36(-22) 

1.5333 7.40(-14) 1.72(-16) 1.15(-22) 

1.6000 6.70(-14) 1.53(-16) 1.01(-22) 

1.6667 6.20(-14) 1.36(-16) 8.70(-23) 

1.7333 5.70(-14) 1.22(-16) 7.30(-23) 

1.8000 5.20(-14) 1.08(-16) 6.50(-23) 

1.8667 4.70(-14) 9.60(-17) 5.80(-23) 

1.9333 4.20(-14) 8.40(-17) 5.10(-23) 

2.0000 3.80(-14) 7.20(-17) 4.30(-23) 

 

 

 

 

 



110 

 

 

 

 

 

1 0 0 1 0 0 0 1 0 0 0 0
1 0

- 1 2

1 0
- 1 1

1 0
- 1 0

1 0
- 9

1 0
- 8

1 0
- 7

1 0
- 6

1 0
- 5

1 0
- 4

1 0
- 3

1 0
- 2

1 0
- 1

1 0
0

1 0
1

1 0
2

H
+
 +  H e ( 1 s

2
)

C
r
o

s
s

 s
e

c
ti

o
n

 (
1

0
-
1

6
c

m
2
)

E n e r g y  ( k e V )

 

 

Figure 1(a). Total cross sections (in cm2) as a function of the incident energy E (keV) for 

reaction H+ + He →H + He+. 

Theory: solid line, present results (post form of BCCIS-4B); dotted line, present results (prior 

form of BCCIS-4B); circle, CDW-4B results of Belkic et al [13] (taken from graph). 
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Figure 1(b). Total cross sections (in cm2) as a function of the incident energy E (keV) for 

reaction H+ + He →H + He+. 

Theory: solid line, present results (post form of BCCIS-4B);dashed line, present results (prior 

form of BCCIS-4B); dotted line, CB1-4B results of Mancev [23]; ○, couple state results of 

Winter [12]; ∆, BDW results of Mancev et al [16]; ∇ , CTMC results of Schultz and Olson [9]; 

diamond shape, BGM results of Zapukhlyak [21].  
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Experiments: ■, results of Shah and Gilbody [31]; solid diamond, results of Rudd et al [30]; ●, 

results of Shah et al [32]; ▲, results of Welsh et al [27]; ▼, results of Allison [25]; +, results of 

Horsdal-Pedersen et al [39]; *, results of Schwab et al [40]. 
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Figure 2(a). Comparison of the differential single-electron-capture cross sections in H+ + He 

collisions for projectile energy 30 keV.  

Theory: solid line, present results (post form of BCCIS-4B); dotted line, eikonal results of Martin 

et al [29]. 

Experiment: ■, results of Martin et al [29]. 
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Figure 2(b). Comparison of the differential single-electron-capture cross sections in H+ + He 

collisions for projectile energy 50 keV. 

Theory: solid line, present results (post form of BCCIS-4B); dotted line, eikonal results of Martin 

et al [29]; ○, BDW-4B results of Mancev et al [16]; ∆, BGM results of Zapukhlyak [21]. 

Experiment: ■, results of Martin et al [29]; ●, results of Schulz et al [36]. 
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Figure 2(c). Comparison of the differential single-electron-capture cross sections in H+ + He 

collisions for projectile energy 100 keV. 

Theory: solid line, present results (post form of BCCIS-4B); dotted line, eikonal results of Martin 

et al [29]; ○, BDW-4B results of Mancev et al [16]; ∆, BGM results of Zapukhlyak [21]. 

Experiments: ■, results of Martin et al [29]; ●, results of Schoffler et al [38]. 
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Figure 2(d). Comparison of the differential single-electron capture cross sections in H+ + He 

collisions for projectile energy 293 keV. 

Theory: solid line, present results (post form of BCCIS-4B); ○, BDW-4B results of Mancev et al 

[16]. 

Experiments: ■, results of Mancev et al [16]; ▲, results of Bratton et al [28]. 
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Figure 2(e). Comparison of the differential single-electron-capture cross sections in H+ + He 

collisions for projectile energies 60, 100 and 300 keV. 

Theory: solid line, present results (post form of BCCIS-4B); ○, BGM results of Zapukhlyak et al 

[22]. 

Experiment: ▲, results of Schoffler [35].     
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6.1. INTRODUCTION 

 Large amount of atomic data are required for modeling the structure and dynamics of 

high temperature plasmas occurring both naturally in space and artificially in fusion devices 

[1,2]. Among the atomic species, numerous investigations over few decades have been 

performed regarding the rare gases [3]. Neon is frequently introduced in tokomaks as a 

diagnostic element for probing fusion plasmas. Charge transfer reactions between partially or 

fully stripped charged ions and neutral atoms are of interest to researchers trying to understand 

line emissions produced in laboratory plasmas and more recently, in non-terrestrial sources such 

as comets [4]. The resulting charge transfer process leads to line emission that can be used as a 

diagnostic tool to measure various parameters of plasma such as temperature, velocity, electron 

density and the charge states of the ions present. Moreover collision between multiple charged 

ions and atomic targets has been studied [5-12]. 

 Ryufuku and Watanabe [13] have studied the single charge transfer cross sections in 

collisions of Ne10+, Si14+ and Ca20+ with H atom in the framework of unitarized-distorted-wave 

approximation (UDWA) method. They give a scaling rule from the observation of theoretical 

results and also investigated the partial cross sections for electron transfer into the individual 

orbital of the projectiles. A classical model [14] is proposed for the electron capture process in 

collision of highly charged ions with atomic hydrogen at low and intermediate impact energies. 

In this model they have investigated the role of classically allowed electron transitions in 

determining the cross section for the electron capture process. It was shown that in the case of 

highly charged fully stripped ions, these transitions become possible at large internuclear 

separations and consequently their contribution to the cross section is significant. For ionic 

charges ZP≤10, the proposed model is valid in the intermediate region. Das et al [15] have 

calculated the charge transfer cross sections in collisions of completely stripped ions of nuclear 

charges ZP =3-8,10 in the energy range 200-700 keV/amu. They have applied a single channel 

distorted wave approximation and found that for a fixed charge state, the maximum contribution 

of cross sections will occur at smaller values of principal quantum number as the projectile 

energy increases. A three-body CTMC method [16,17] has been used to examine details of the 

charge transfer process between the highly charged bare projectile ions and neutral hydrogen. 
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This calculations show clear deviation from the population of states with large angular 

momentum quantum numbers to states characterized by low values as the collision energy is 

lowered. These deviations begin at collision energies somewhere below 500 keV/amu depending 

on the ion. Errea et al [18] have calculated the total and partial cross sections for capture and 

ionization in collisions of highly charged ions on neutral hydrogen using molecular-close-

coupling and impact -parameter classical trajectory Monte Carlo method. These data are of 

crucial importance to analyze physical state of the actual tokamak plasmas in which Ne- ionic 

impurities are deliberately introduced to enhance energy and particle confinement. They found 

the CTMC calculation does not provide accurate partial capture cross sections compare to the 

molecular calculation at low energy and low values of principal quantum number (n). Later they 

[19] extended their CTMC calculations to such reactions at low velocities and also highlighted 

the limitations of the classical method. They have shown that classical and semi-classical 

mechanisms are essentially the same, although at low velocities the method is unable to describe 

the fall of the cross section. Recently Errea et al [20] have calculated the total and partial cross 

sections for capture and ionization in collision of highly charged ions with hydrogen in the 

energy range 30-300 keV/amu. They specially focus on capture into high-lying states of the 

projectile, which are much more important in diagnostics of fusion plasmas. It is to be mentioned 

that most of the cross sections data have been calculated in collision of fully stripped neon ions 

with hydrogen. Charge transfer cross sections into each individual sub-shell are not available. 

Under the context, we are motivated to study the single charge transfer reaction involving Neq+ 

(q=1-6,10) with hydrogen atom in the intermediate to high energy using quantum mechanical 

and classical method. We have also chosen to study the double charge transfer reaction in 

collision of fully stripped neon ions with helium atom.  

 The organization of the paper is as follows. Theoretical formulation has been described in 

Sec.2. Results and discussions are the contents of Sec.3. In Sec.4 we add some concluding 

remarks. Atomic units are used throughout unless otherwise mentioned. 
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6.2. THEORY 

 The reactions under the study may generally be represented by  

Neq+ (q=1-6,10) + H(1s) → Ne(q-1)++H+,  (single electron capture)        (1) 

and  Ne10+ + He(1s2) → Ne8+ )n,(n ll ′′ + He2+, (double electron capture)        (2) 

6.2.1. Classical formulation: Let the cartesian co-ordinates of the active electron with respect to 

the target ion (T) are q1, q2 and q3 respectively. Let the same quantities are q4, q5 and q6 

respectively for the incoming projectile ion (P) with respect to the centre of mass of the target 

system.  So P),T,e,j(i,rij =
r

the distance between any pair of two particles may easily be 

expressed in terms of qi (i =1,6) provided mass (MT) of the residual target ion, mass (MP) of the 

projectile ion and electron mass are known. Let pi (i=1,6) are the canonical momenta conjugate 

to the rectangular co-ordinate qi  (i=1,6). So the classical hamiltonian of the three system (for 

equn. 1) may be written as  

)r(V)r(V)r(V
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and Vij (i,j = e, T, P) is the two body pair interaction between i-th and j-th particle. So the 

Hamilton’s equations of motion may be written as  

ii qp &µ= ,               i=1,2,3                                                         (4a) 

ii qMp &= ,              i=4,5,6                         (4b) 
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where )r(V)r(V)r(VV TPTPPePeTeTe

rrr
++=     . 

This set of twelve equations given by (4a) - (4d) describes the motion of the whole system in 

center of mass frame of the active electron and residual target ion. The interaction of the active 

electron with the target is uniquely determined by the Coulomb potential. But for the partially 

stripped charged projectile ions of neon, the model potential [21] is taken in the form of   

    ( )rzz
r

e

r

z
)r(V 21

rz
0

mod

3

+−−=
−

r
, z1=zP-z0. 

Here z0, zP and z1 are respectively asymptotic charge, nuclear charge and screened charge of the 

projectile. z2 and z3 are two arbitrary parameters chosen variationally with respect to Slater basis 

set in such a way that corresponding Hamiltonian of the active electron in the final state is 

diagonalised to reproduce correct binding energies. These binding energies of the active electron 

of different projectile ions are calculated from the tables of Clementi and Roetti [22] and works 

of Clark and Abdallah [23]. In an attempt to make the parameters z3 and z2 to be unique as far as 

possible, we have tested the virial theorem with an accuracy of 0.001 % with respect to the 

chosen Slater basis set.  In doing so, we have found the values of z3 and z2 which are given in 

Table 1. It may be mentioned here that we have not included the polarization potential term 

because we have found that, the effect of such part beyond cut off potential has very little effect 

on the totality and enhances the consumption of computational time only. The method of 

calculation has been described in detail elsewhere [21]. 

6.2.2. Quantum mechanical formulation: 

6.2.2.1. Single charge transfer: The total Hamiltonian of the three body system for the reaction 

(1) may be written as ( ) ( ) ( )RVrVrVHH TPPPeTTe0

rrr
+++=  
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The post form of the transition amplitude in the framework of 3-body boundary corrected 

continuum intermediate state approximation (BCCIS-3B) [24] may be written as 

( ){ }

( ){ } ( ){ } ( )TiPiPi211PiPi111
R.ki

T

T

P

T*
fPfPf311

R.ki
PPiff

)(
if

rR.kRkai;1;iαFr.vrvbi;1;αiFe

r

Z

R

Z
R.kRki;1;αiFeRdrdNψ|V|ψT

Ti

Pf

rrrrr

rrrr

rr

rr

ϕ

ϕ

−−+

×







−+−=〉〈= ∫∫ −++

 (5) 

where 
( )

( ) ( ) ( )
( )

f

PT
3

i

P
21321

ααα
2

π

v

1zz
α,

v

z
αα,αi1Γαi1Γαi1ΓeN

321 −
===++−=

−−

. 

Using the integral representation of confluent hypergeometric function, equation (5) may be 

written as 
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Here the λ is the exponential parameter in the final state wavefunction and the constant C 

originate from the final bound state wavefunction. 
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Using Fourier transforms techniques and following Lewis [25] the space integration J of the 

equation (7) can be evaluated. Following Sinha and Sil [26], the integral J may be reduced as   

∫
∞

++
=

0 11
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2

2
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dx

b

π16
J ,             (8) 

where 111 γ,β,α are linear functions of t1 and t2. Thus we can write 11
2

1 γxβ2xα ++ as 

A+Bt1+Ct3+Dt1t3, where A, B, C, D are functions of t2, and x. Hence by applying Cauchy’s 

residue theorem, equation (6) can be reduced into the following form  
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Finally we have performed the t2 and x integrations numerically [27]. 

6.2.2.2. Double charge transfer: The post form of thetransition amplitude in the framework of 

4-body boundary corrected continuum intermediate state approximation (BCCIS-4B) for the 

reaction (2) may be written as [28] 
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The integral representation of the hypergeometric function is given by  
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Using the integral representation of confluent hypergeometric function, the Fourier transform, 

the Feynman parametric integral and following Lewis [25], Sinha and Sil [26], equation (11) 

becomes  
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where D is the appropriate parametric differential operator used to generate the singly excited 

state wavefunctions and K may be written as 
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Equation (9) contains two-dimensional integral, Lewis, and a complex contour integration, but 

the equation (12) contains four-dimensional integrals such as Lewis, Feynman and two complex 

contour integrations. The complex contour integrations is converted to real integral [27] and is 

integrated using Gauss-Laguerre quadrature method. Finally, integration over the scattering 

angles has been performed with the Gauss-Legendre quadrature method. 

6.3. RESULTS AND DISCUSSION 

 We have performed quantum mechanical ( post form of BCCIS approximation) and 

classical calculations (CTMC) in collision of multiply charged Neq+ (q=1-6,10) ions with ground 
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state atomic hydrogen in the impact energy range 50 ≤ E ≤ 1000 keV/amu (v =1.41 a.u to 6.33 

a.u). Total charge transfer cross sections have been obtained by summing over all contributions 

into each shell up to principal quantum number n=4 and the contribution to each individual sub-

shell is determined by multiplying the calculated cross sections by a Pauli blocking factor [29]. 

All our calculated results are given in graphical form (Figures 1-8). The variation of double 

charge transfer cross sections in collision of fully stripped Ne10+ ions with helium atoms in the 

energy range 80-2000 keV/amu (1.79 a.u to 8.95 a.u) are plotted in Figure 9 using the post form 

of BCCIS-4B approximation [28,30]. The variation of double-to-single capture cross sections 

with projectile energies is shown in Figure 10. State-selective results are also displayed in Table 

2 for Ne10+ + He collision. 

6.3.1. Single charge transfer and ionization 

In Figure 1(a)-1(c), the calculated total capture cross sections along with the cross 

sections for capture into a specific n-state and l -state are plotted for projectile ion Ne+. We have 

seen that the major contribution to the total capture cross section comes from capture into the 

n=2 state and contribution from n>2 is negligible at energies greater than 300 keV/amu. We have 

not considered the capture into 1s state of the projectile as it is a completely filled state. Due to 

unavailability of any experimental results, we have only compared with the results obtained by 

CTMC method. In Figure 1(a), the CTMC results agree with the present BCCIS results below 

300 keV / amu. We have plotted the variation of cross sections with principal quantum number 

(n) in Figure 1(b) and angular momentum quantum number ( l ) in Fig.1(c) for Ne+ + H collision. 

We found the contribution of charge transfer cross sections obtained by the BCCIS 

approximation for n=4 comes from d- and f-states at E<400 keV/amu and maximum from p-state 

at energy E>400 keV/amu. But in Figure 2(a), we have seen the contribution is maximum for 

n=3 at E<400 keV/amu and for n=2 at E ≥400 keV/amu. In Figure 2(c), the contribution of 

charge transfer cross sections for given principal quantum number n=4, is maximum at d-state. 

Same feature is obtained from the CTMC calculations. Energy variation of total single electron 

capture cross sections have been presented in figures 3(a), 4(a), 5(a) and 6(a) for collisions of 

Neq+ (q= 3 – 6) with H atoms respectively. We have compared our computed results with the 

CTMC results of Maynard et al [31]. From these figures we may find that our computed results 
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are in reasonable agreement with the results of Maynard et al. For Ne3+ and Ne4+ ions in Figure 

3(b) and Figure 4(b), present BCCIS results shows that major contribution of total charge 

transfer cross sections comes from n=3 and n=4 at low energy range. But CTMC results have 

their peak values at n=3 state in the low energy range and at n=2 state in the high energy range 

for both charge state q=3,4. For q=3-6 charge states (in Figure 3(c), Figure 4(c), Figure 5(c), and 

Figure 6(c)), both the results (BCCIS and CTMC) have almost identical l -distributions for n=4 

state i.e their peak values occur at the d-shell. The total cross sections as a function of incident 

projectile energy for collision of the Ne10+ ion with the hydrogen atom are displayed in figure 

7(a). The present results are compared with the theoretical works of Maynard et al [31], Perez et 

al [17], Ryufuku and Watanabe [13], Das et al [15] and the experimental works of Meyer et al 

[32]. Our calculated results are not in satisfactory agreement with the other theoretical findings. 

From figures 3(b), 4(b), 5(b) and 6(b) respectively, it has been shown that the cross sections 

increase with n for increasing charge state. However contribution from n>5 shell is quite 

significant for Ne10+ + H collision which is shown in Figure 7(b). For this reason, discrepancy 

appeared in Figure 7(a). We may also find that for higher excited shells (identified higher values 

of n) higher l  sub-shells (d and f sub-shells) contribute significantly and lower l  sub-shells (s 

and p) have small contribution. The capture peak in the individual shell and sub-shells may be 

explained in terms of the nearest matching of the binding energy and momentum distribution of 

the active electron in the initial and final state. The variation of ionization cross sections with 

energy is shown in Figure 8 for charge states q=1-6 using only the CTMC method. Due to non-

availability of any experimental result for such ions, we are unable to compare them in our 

investigation. From Figure 8, we may find that the peak of the ionization cross sections shift 

towards higher projectile energies as projectile charge increases because any electron removed 

from the H atom is preferentially captured by the strong Coulomb field of the projectile. 

6.3.2. Double charge transfer 

 BCCIS-4B results for double electron capture by fully stripped Ne10+ in He(1s2) collision 

are displayed in Figure 9. The experimental results of Kase et al [33] for collision of Ne2+ ion 

with He atom in the energy range 50-150 keV/amu have been compared with our present results 

for the same process. In Table 2, state selective results are given for capture into ground state 
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(1s2)1S and into the first singly excited states. In all cases, calculations have been carried out 

using Lowdin wavefunctions [34] for helium in the initial channel and configuration interaction 

wavefunctions of Novikov and Senashenko [35] for the final state on the projectile. In figures, 

we have plotted present theoretical results which are obtained by summing the contributions 

from the ground state and from the 1st singly excited states. From this graph, it is evident that 

present ground state results slightly overestimate the experimental results of Kase et al [33]. But 

the results of excited states have reasonable discrepancies with the experiment. As we have 

already mentioned in our previous work [28], that for the low-charge states, the capture is 

favored only in the ground state and for highly charged ions, capture is usually favored to several 

excited states of the final states of the product ions. Due to unavailability of any experimental 

and other theoretical data, the double-to-single capture ratio with the projectile energy is plotted 

in Figure 10. From the figure we may find that the ratio increases with projectile energy and 

finally it gets almost saturated in the higher energy regime. 

6.4. CONCLUSIONS 

 The main purpose of this paper is to present the theoretical data on absolute total capture 

cross section and sub-shell distribution of single and double electron capture cross sections of 

Neq+ recoil ions by H and He atoms in the intermediate to high energies in the framework of 

BCCIS and CTMC methods. These data are of crucial importance to analyze the physical state of 

actual tokamak plasmas in which Ne ionic impurities are introduced to enhance energy and 

particle confinement. It is well known that the inclusion of intermediate continuum state is very 

much important to take into account to describe a charge transfer event. However, in the case of 

asymmetric collision where ZP>ZT, post form of BCCIS approximation is appropriate as 

projectile continuum states are to be taken into account. We have adopted model potential 

containing both a long-range part and a short-range part for the interaction of the active electron 

with the projectile ion. For ZP>ZT, the major contribution of total chare transfer cross sections 

comes from higher excited states. 
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Table 1. Model potential parameters z0, z1 z2 and z3. 

Ions εi z0 z1 z2 z3 

Ne
+
 -1.6042 1.0 9.0 2.6450 2.2280 

Ne
2+

 -2.3809 2.0 8.0 1.8750 2.3180 

Ne
3+

 -3.4025 3.0 7.0 1.8250 2.4180 

Ne
4+

 -4.3240 4.0 6.0 1.7250 2.6180 

Ne
5+

 -5.8230 5.0 5.0 1.6150 2.5170 

Ne
6+

 -7.4986 6.0 4.0 2.0660 2.7170 

 

Table 2. Theoretical cross sections (in units of 10
-16

 cm
2
) as a function of energy for double electron 

capture reaction Ne
10+

 + He(1s
2
) → Ne

8+
(nl,n’l’) + He

2+
. 

States Energy (keV/amu) 

 80 100 200 400 500 1000 2000 

(1s1s)
1
S 4.01(-2) 2.76(-2) 8.43(-3) 2.08(-3) 1.36(-3) 2.81(-4) 3.97(-5) 

(1s2s)
1
S 3.05(-2) 2.18(-2) 1.25(-2) 6.04(-3) 2.96(-3) 6.32(-4) 8.50(-6) 

(1s2p)
1
P 3.62(-2) 3.15(-2) 2.11(-2) 1.08(-2) 7.67(-3) 8.44(-4) 6.50(-5) 

(1s3s)
1
S 2.14(-2) 1.80(-2) 9.06(-3) 3.15(-3) 1.25(-3) 4.71(-4) 3.01(-5) 

(1s3p)
1
P 3.51(-2) 3.10(-2) 1.87(-2) 5.50(-3) 2.75(-3) 6.27(-4) 5.39(-5) 

(1s3d)
1
D 4.27(-3) 4.00(-3) 3.11(-3) 7.84(-4) 3.49(-4) 6.00(-5) 5.82(-7) 
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Figure 1(a). Variation ofcalculated total capture cross sections for the dominant n-states for the 

interaction Ne+ + H (1s) with collision energy, (b) Capture cross sections from specific n-states 

by the projectile ion Ne+ and (c) Cross sections for electron capture to specific l values for Ne+ 

ion. 
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Figure 2(a). Variation ofcalculated total capture cross sections for the dominant n-states 

for the interaction Ne2+ + H (1s) with collision energy, (b) Capture cross sections from 

specific n-states by the projectile ion Ne2+ and (c) Cross sections for electron capture to 

specific l values for Ne2+ ion. 
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Figure 3(a).Variation ofcalculated total capture cross sections for the dominant n-states for the 

interaction Ne
3+

 + H (1s) with collision energy, (b) Capture cross sections from specific n-states 

by the projectile ion Ne
3+

 and (c)Cross sections for electron capture to specific l values for Ne
3+

 

ion. 
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Figure 4(a).Variation ofcalculated total capture cross sections for the dominant n-states for the 

interaction Ne
4+

 + H (1s) with collision energy, (b) Capture cross sections from specific n-states 

by the projectile ion Ne
4+

 and (c)Cross sections for electron capture to specific l values for Ne
4+

 

ion. 
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Figure 5(a).Variation ofcalculated total capture cross sections for the dominant n-states for the 

interaction Ne
5+

 + H (1s) with collision energy, (b) Capture cross sections from specific n-states 

by the projectile ion Ne
5+

 and (c)Cross sections for electron capture to specific l values for Ne
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ion. 
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Figure 6(a).Variation ofcalculated total capture cross sections for the dominant n-states for the 

interaction Ne
6+

 + H (1s) with collision energy, (b) Capture cross sections from specific n-states 

by the projectile ion Ne
6+

 and (c)Cross sections for electron capture to specific l values for Ne
6+

 

ion. 
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Figure 7(a).Variation ofcalculated total capture cross sections for the dominant n-states for the 

interaction Ne
10+

 + H (1s) with collision energy, (b) Capture cross sections from specific n-states 

by the projectile ion Ne
10+

 and (c)Cross sections for electron capture to specific l values for 

Ne
10+

 ion. 
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Figure 8.Calculated ionization cross sections for the interaction Ne
q+

 (q=1-6) + H (1s) at collision energies 

ranging from 50 to 1000 keV/amu. 
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Figure 9.Calculated double capture cross sections for the interaction Ne
10+

 + He (1s
2
) at collision energies 

ranging from 80 to 2000 keV/amu. 
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Figure 10.Calculated double-to-single capture cross sections for the interaction Ne
10+

 + He / H at collision 

energies ranging from 100 t 
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7.1. INTRODUCTION 

In recent years much work has been devoted to the study of single-electron capture by 

multi charged ions interacting with few- electron atoms. When many active electrons are 

involved in high energy ion- atom collisions, one has to face the question of the influence of 

electronic correlations on the magnitude of cross section for the process. The study of inter-

electronic correlation has played a central role in atomic collision physics for a long time [1]. 

Not only this research is motivated by the quest for a better understanding of the fundamental 

few-body dynamics, but it has also practical implications for applied field, such as plasma 

physics and fusion research. For a long time, theoretical and experimental efforts concentrated 

on the energy dependence of total cross sections (TCSs) for a single-electron transfer from 

single-electron target atoms/ ions colliding with hydrogenlike projectiles. In this respect, 

previous theoretical work consists of calculations in the framework of three-body formalism such 

as the continuum distorted wave (CDW-3B) approximation of Belkic [2], coupled-channel 

calculations of Ford et al [3], Oppenheimer-Brinkman-Kramers (OBK) approximation [4,5], 

classical trajectory Monte Carlo (CTMC) method [6,7], CDW-3B and continuum intermediate 

state (CIS) approximations [8] and two-centre atomic orbital close-coupling method of Liu et al 

[9]. Some of these three-body models show a satisfactory agreement with experimental data, but 

these models completely neglect electronic correlations. In the present paper we shall be 

particularly interested in processes of the single-electron capture, in which the two electrons take 

part. Such processes involve scattering between the two hydrogen-like atoms. However, different 

quantum mechanical four-body formalisms for such reactions have been proposed. Different 

four-body theories such as boundary corrected first Born approximation (CB1-4B) of Mancev 

[10,11], CIS approximation of Banyard and Shirtcliffe [12], CTMC method of Becker and 

MacKellar [13], atomic-orbital expansion method of Fritsch and Lin [14], time-dependent 

Hartree-Fock approximation (TDHF) of Henne et al [15], CDW-4B method [16,17], CDW-4B 

and CB1-4B method of Mancev [18,19]. In the present theoretical investigation, we have focused 

our attention on charge transfer of hydrogen-like ions/ atom by the impact of H, He+ and Li2+ 

ions in the incident energy range between 20 and 5000 keV/amu. 
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 The total and partial single-electron capture cross sections in He+ - He+ collision has 

been studied within the two-electron form of the atomic-orbital expansion method [14]. The 

calculated results are in very close agreement with experimental data at lower energies. Cross 

sections for single-electron capture in the collision of partially and completely stripped projectile 

ions with hydrogen-like atoms were calculated by Belkic [2] in the framework of three-body 

CDW approximation at incident energies ranging from 25 keV to 10 MeV. In this method, the 

dynamic correlations have been neglected. The calculation shows that in the low energy range, 

the computed results are not in satisfactory agreement. The problem of single charge exchange in 

collision of hydrogen-like atoms with ground state hydrogen-like atom / ion was investigated by 

Mancev [10] in the framework of CB1-4B theory within the distorted wave four-body formalism. 

In such investigation, they have studied the sensitivity of the total cross sections to the choice of 

ground state wave function for helium-like atoms and the influence of non-captured electron on 

the final results. However, the agreements of the obtained results with the experimental findings 

are not satisfactory in the low energy range. Mancev [11] also investigated the cross sections for 

single-electron transfer from helium atoms by the impact of hydrogen atoms and helium ions 

using same method. They have used an independent particle model with one-electron Roothan-

Hartree-Fock (RHF) orbital for the target atom. Agreement of the obtained results with the 

experimental data for He+ + He collision is not satisfactory in the whole energy range. Becker 

and Mackellar [13] have developed a general four-body version of CTMC and calculated the 

electron transfer and ionization for He+ + H and H + H collisions in the energy range 35-1000 

keV, but there are substantial differences compared with the experimental results. The CDW-4B 

model [18] has been used to investigate the charge exchange between hydrogen-like projectiles 

and atoms. In this calculation, the effects of electron correlation have been explicitly taken into 

account in the complete perturbation potential. The calculation shows that below 200 keV/amu 

for He+ + He collision and 150 keV for He+ + H collision, respectively, the computed results are 

not in satisfactory agreement. Later, Mancev [19] investigated the total cross sections for change 

transfer in Li2+-H and He+ - He+ collisions using the CB1-4B and CDW-4B in the energy range 

10-5000 keV/amu. In this calculation, the dynamic correlation has been taken into account 

through the perturbation potential. The computed results are not in agreement with the 

experimental results in the energy range 10-300 keV/amu. Recently, electron capture by fast 
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Beq+ (q=2,3) and Bq+ (q=3,4) ions in collisions with atomic hydrogen have been also studied by 

Liu et al [9] in the framework of the two-centre atomic orbital close coupling method (TC-

AOCC) in the energy region from 0.1 keV/amu to 100 keV/amu. Total and sub-shells state-

selective cross sections are compared with available experimental and other theoretical data. 

These results are quite satisfactory. In this context, Belkic et al [20] have extensively discussed 

different quantum mechanical four-body methods for various inelastic ion-atom collisions. Based 

on the success of four-body boundary corrected continuum intermediate state (BCCIS-4B) 

approximation [21], we are motivated to study the above mentioned processes in the framework 

of the BCCIS-4B theory at impact energies 20-5000 keV/amu. 

 The plan of this paper is as follows. We present the details of our calculations in Sec.II 

and discuss our computed results in Sec.III. Finally, we make our concluding remarks in Sec.IV. 

Atomic units will be used throughout unless otherwise stated. 

7.2. THEORY  

 Single-electron capture in the process of the scattering between two hydrogen-like atomic 

systems may be written as  

Tf21Pi2Ti1P Z)e,e;(Z)e,(Z)e;(Z
21

+→+ ,   (1) 

where Zp and ZT are, respectively, the nuclear charges of the projectile and the target. Here e, T 

and P represent active electron, target ion and projectile ion respectively. 1e and 2e  are the two 

electrons initially bound to the projectile and target nucleus respectively. Finally the electron 2e  

is captured by the projectile but 1e  occupies the same orbital before and after collision. Let 1s
r

 

and 2s
r

 ( 1x
r

and 2x
r

 ) be position vectors of the first and second electrons (e1 and e2) relative to 

the nuclear charge of the projectile Zp (target ZT). The inter-electronic coordinate is denoted by 

212112 xxssr
rrrrv

−=−= . R
r

denotes the position vector of the projectile (P) relative to the target (T) 

nucleus. In the entrance channel, it is convenient to introduce TR
r

 as the position vector between 
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the center of mass of )e;(Z 1P  and )e;(Z 2T  system, and PR
r

 is the position vector of the center of 

mass of )e,e;(Z 21P  system relative to ZT. The total Hamiltonian of the system may be written as  

ffii VHVHH +=+=      (2) 

where Hi,f represents Hamiltonian in the entrance and exit channel respectively and Vi,f are the 

corresponding perturbation potentials, respectively. Let MT (Mp) be the mass of the target 

(projectile) nucleus. In the initial channel, one may write  
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When the aggregates P and T are far apart, they interact through a residual Coulomb potential

( )( )

T

TP

R

1Z1Z −−
. According to the prescriptions of collision theory [22], this asymptotic potential 

has to appear in the initial channel Hamiltonian ( iH ). However, the initial perturbation potential 

iV  is obtained by subtracting the asymptotic potential from the total interaction potential 

between projectile and target. So, in the initial channel iV  decreases much faster than Coulomb 

interaction at large internuclear distance )R(
r

. In the exit channel, the target is a bare ion. Thus, 

fH and fV  can be written as  
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where  
( )( )
( ) ( ) P

P

T
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TP

PT
f

TP

TP
i M1

M
b,

M1

M
a,

MM2

)M(2M
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µ

+
=

+
=

++

+
=

++

++
= . 

The prior form of the scattering amplitude may be written in the form  

     >=< −−
iif

)(
if ψ|V|ψT     (5) 

Here the wavefunction in the initial channel is given by 

( ) ,Rχ)s()x()s,x,R(ψ Ti1P2T12Ti

rrrrrr
+= ϕϕ  

where )x( 2T

r
ϕ  and )s( 1P

r
ϕ  are the target bound state and the projectile bound state 

wavefunctions, respectively. ( )Ti Rχ
r

+ is the coulomb distorted wave for the relative motion of P 

and T in the centre of mass frame of the whole system which satisfies the equation   

   
( )( ) ( ) 0Rχ

µ2

k

R

1Z1Z

µ2

1
Ti

i

2
f

T

TP2
R

i
T

=







−

−−
+∇− +

r
   (6) 

Solving this equation, we find  

( ) ( ){ }TiTi311
R.ki

3

α
2

π

Ti R.kRki1;;αiFe)αiΓ(1eRχ T
3

rrr rr

−−+=
−

+ i   (7) 

where 
i

TP
3 v

)1)(Z1(Z
α

−−
= . Furthermore, ik

v
 is the initial wave vector. The electron in the 

projectile is passive. The passive electron plays the role of screening the projectile ion. However, 

the interaction of the target ion with the screened projectile ion and that between the active 

electron and the projectile core are described by the Coulomb continuum wavefunctions in the 

final channel. The Coulomb continuum wavefunction in the final channel )(
fψ −  is given by  



156 

 

( )
( ) ( ) ( ) ( ){ }

( ){ } ,R.kRki;1;αiF
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where 
( )

f

PT
2

f

T
1 v

1ZZ
α,

v

Z
α

−
== . 

Here ( )21f s,s
rr

ϕ  is the bound state wavefunction of the atomic system (Zp; e1, e2). The bound 

state wavefunction of Li+ or He i.e. ( )21f s,s
rr

ϕ  may be written as [23] a set of two electron 

hydrogenic configurations ( )21λ'λ, s,s
rr

ϕ . 

( ) ( )21
f
λλ'

λ'λ

f
λλ'21λλ, s,sas,s

rrrr
ϕϕ ∑

≤

′ = ,  

where f
λλ'ϕ  is a configuration with the same symmetry as fϕ . 

( ) { }.)s,s(Y)(sR)(sR1)()s,s(Y)(sR)(sRNs,s 21
LM

ll2ln1ln
δ

21
LM
ll2ln1lnf21

f
λλ' λλ'λλλ'λ'λ'λλ'λ'λλ

))))rr
−+=ϕ  

(9) 

Here the constant 
2

1
N f =  for λ'λ ≠  

   =
4

1)(1 SL+−+
 for λ'λ = and λ'λ llSLδ −−+= . 

1,2)(kŝk = is the direction of the vector ks
r

, )(sR kln λλ
 and )s,s(Y 21

LM
ll λ'λ

))
 are radial hydrogenic 

function and spherical harmonics, respectively. 

The transition amplitude in the post form can be written as 

>=< ++
iff

)(
if ψ|V|ψT     (10) 
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where fψ  is the wave function in the final channel which is given by ( ) ( )Pf21ff Rχs,sψ
rrr −= ϕ . 

( )21f s,s
rr

ϕ is the final bound-state wavefunction and ( )Pf Rχ
r

− , the Coulomb distorted wave in the 

exit channel, is given by 

( ) ( ) ( ){ }PfPf311
R.ki
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π
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rrr rr
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where 
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f

PT
3 v

2ZZ
α

−
= . fk

r
is the final wave vector. Here, the passive electron in the projectile 

plays the role of screening the projectile ion in the initial channel. However, the interaction of the 

active electron and the target ion with the screened projectile ion are described by the Coulomb 

continuum wavefunctions. So, the wavefunction in the initial channel may be given by 
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( ) ( ) ( ) ( ){ }
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Here ( ) )s()x(s,x 1p2T12i

rrrr
ϕϕϕ = . )x( 2T

r
ϕ and )s( 1p

r
ϕ  are the hydrogen-like wavefunction for the 

target and the projectile respectively. The transition amplitudes in the prior and post forms for 

single- electron capture in the BCCIS-4B theory may be written as 
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where 
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 Using the integral representation of confluent hypergeometric function, the technique of Fourier 

transform, Feynman parametric integral such as ∫ ′−+′
=

′′

1

0
2]bx)(1xa[

dx

ba

1
 and applying the 

Lewis integral [24], respectively, equation (13) and (14) can be expressed in both prior and post 

forms as  
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Here A, B, C and D in prior form (-) and post form (+) are given by  
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The terms +++
+ 11232 EandP,λ,q

r
 can be explicitly written as  
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Here the constant C′ originates from the initial and final bound state wavefunctions. 

)ε,γ,γ,δ,βD( 12121 is a parametric differential operator used to generate the excited-state 

wavefunctions. 2δ , 1γ and 1γ′ , 2γ  are the orbital component of the initial and final bound state 

wavefunctions. Finally, the total cross sections in prior form ( )(
ifQ − ) and post form ( )(

ifQ + ) are 

given by   
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where dΩ  is the solid angle around ik
r

.  

The transition amplitude contains three-dimensional integrals such as Lewis, Feynman and a 

complex contour integration. The final real form of this complex contour integration (in t3) in 

equation (15) may be written [25] as 
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where 33
τ /t)t(1e −=  , τ  being the transformed integration variable, and f(0).)f(t)(t 33 −=ϕ  
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The real two-dimensional integration in y and τ  is finally carried out numerically. To evaluate 

the double integral (y andτ ), we first perform the y integration by Gauss quadrature method with 

different fixed values of τ  which are the Gauss Laguerre quadrature points required for the 

subsequent τ  integration. The Feynman integral has been evaluated numerically with the 48-

point Gauss-Legendre quadrature method. Finally, integration over the scattering angles has been 

performed with the 48-point Gauss-Legendre quadrature method. However, it may be mentioned 

that cross sections have finally been evaluated with an accuracy of 0.1%. 

7.3. RESULTS AND DISCUSSION 

The total single-electron capture cross sections for the process of the scattering between 

two hydrogen-like atomic systems were obtained by summing over all contributions (ground 

state (1s2), singly excited states 1s2s, 1s2p) from individual shells and sub-shells upto n=2, 

except H + H collision as the −H  ion does not have any stable excited states. So only one state is 

to be taken into account in the capture process. The variation of single-electron capture cross 

sections of ground state hydrogen like ions by the impact of different projectile ions as a function 

of the incident energy ranging from 20-5000 keV/amu are plotted in Figs 1-4, respectively using 

both prior and post forms of BCCIS-4B approximation. Post-prior discrepancy does not exceed 

20% for all interactions above 70 keV/amu. Numerical computations are carried out for the 

following reactions.  

     +− +→+ H)s(1HHH 2     (18) 

+++ +→+ 2HeHeHeHe     (19) 

     ++ +→+ HHeHHe      (20) 

     +++ +→+ HLiHLi 2      (21) 

The present results obtained for the reaction (18) are presented in Fig.1 in both forms of BCCIS-

4B approximation. Our computed results for total single-electron capture cross sections have also 

been compared with the measurements of McClure [26], Schryber [27], Hill et al [28] and the 
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theoretical results of Mancev [10] obtained by CB1-4B method, the continuum-intermediate-

states approximation (CIS) of Banyard and Shirtcliffe [12], CDW method of Moore and Banyard 

[29] using Hartree-Fock (HF) function, the first Born approximation of Mapleton [30] and the 

couple-state results of Wang et al [31]. The agreement between BCCIS-4B theory and 

experimental results [26,27,28] are found to be satisfactory in both low and intermediate energy 

range. Additional experimental results at higher impact energies are very much needed to 

provide a better test of our formalism. The CB1-4B results of Mancev [10] obtained by means of 

the Hylleraas wave function [32] for H-(1s2) have a trend of departing from experimental data 

below 200 keV as collision energy decreases. This is expected because the formulation does not 

include intermediate continuum states which are very much important for the description of a 

charge transfer event. It is also observed that the present computed results using Hylleraas wave 

function [32] agree with the theoretical results of Moore and Banyard [29], but agreement is not 

satisfactory with the CIS method of Banyard and Shirteliffe [12] using HF function in the low 

energy region. The reason may be attributed to the fact that CIS method does not satisfy proper 

boundary condition. However, the results of Mapleton [30] obtained by the two parameter 

wavefunction of Chandrasekhar [33] in the first Born approximation overestimate the present 

findings at low energies. This feature is obvious because first Born approximation is valid at high 

energies. In Fig.2, we have displayed the present results for another symmetric collision of He+ 

with He+ as a function of incident projectile energy. The present data are compared with the 

existing experimental results of Murphy et al [34], Melchert et al [35], Schmidt-Bocking and 

Dorner [36] (for the reverse reaction: s)(1Hes)(1He)sHe(1He 22 +++ +→+ ) and only the 

theoretical results of Mancev [19]. However, our calculated results are in better agreement with 

the experimental results [34,35] in comparison to other theoretical results [19] particularly at 

lower side of the energy region under consideration, but agreement is poor with other 

experimental results [36] who have measured the cross sections for the reverse reaction. This 

discrepancy may be attributed to the principle of detail balancing. The theoretical results of 

Mancev using the CB1-4B [19] approximation agrees with the experimental results of Schmidt-

Bocking and Dorner [36] (data taken from Ref. [10]), whereas the results obtained by the CDW-

4B model [19] overestimate the experimental results [34-36] below 150 keV/amu.  In the CDW-

4B method, the electronic continuum intermediate states are included in both channels through 
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the Coulomb waves but not being included in the CB1-4B method. However, the CDW-4B and 

CB1-4B approximation may not be accurate at low energies. We have also observed that the 

ground state capture is dominant as for symmetric collision. This is expected because of energy 

resonance and velocity matching of the active electron in the initial and final states. We find 

from Fig.1 and Fig.2 the post-prior discrepancy is within 20% above 60 keV/amu for H + H 

collision and throughout the whole energy region for He+ + He+ collision. 

 Now, we shall study our computed results for the asymmetric reactions given by (20) and 

(21). In Fig.3, we have displayed the present results along with other available experimental and 

theoretical data for collision He+ + H. From Fig.3, it is evident that the present computed results 

show overall good agreement with the experimental results [37-39]. The results obtained by 

CDW-4B approximation [18] overestimate the present computed results below 500 keV as the 

CDW-4B approximation may not be valid in the low energy range. The CTMC results of Becker 

and MacKeller [13] overestimate all the available results to a significant extent because classical 

treatment of a two-electron collision system may not be accurate. It may be seen from Fig.3 that 

the present results show good agreement with the theoretical results of Mancev [10] in the whole 

energy range. In such case post-prior discrepancy is less than 20% above 70 keV/amu. For Li2+ + 

H collision, the present computed results in both forms are presented in graphical form in Fig.4. 

We have compared our theoretical results with only the experimental results [40] and theoretical 

results [4,6,19]. It is evident that the present results show good agreement with the experimental 

results. However, a comparison of the CDW-4B and CB1-4B models of Mancev [19] with the 

measurements shows that the theoretical curves underestimate experimental data, especially at 

lower impact energy (less than 400 keV/amu). The results obtained by the method of three-body 

formalism of BCCIS approximation in prior form and CTMC method [6] have similar trend with 

the present BCCIS-4B model. In both these methods [6], the interactions of the active electron in 

the target with incoming projectile ions have been taken by a suitable potential containing both a 

long-range part and a short-range part. However, such a BCCIS-3B model cannot yield any 

information about the relative significance of the role of the dynamic electron-electron 

correlation in collisions under study. As may be expected, the theoretical results of Eichler et al 

[4] using Oppenheimer-Brinkman-Kramers (OBK) approximation are not in agreement with the 

present results. We have observed that maximum contribution of total capture cross sections 
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occur at n=2 state for Li2+ + H collision in the low energy range. The capture peak in the 

individual state may be explained in terms of the binding energy matching and the momentum 

distribution of the active electron in the initial and final state respectively.  

7.4. CONCLUSIONS 

We have calculated cross sections for the capture of 1s electron by hydrogen-like projectile ions 

using the BCCIS-4B approximation in both the prior and post forms in the collision energy range 

of 20-5000 keV/amu. The present computed results are in satisfactory agreement with the 

experimental observations. The reasons for such success are the following: (i) the continuum 

state of active electron have been taken into account properly; (ii) the boundary condition for the 

scattering wavefunction has also been satisfied; and (iii) the potential is faster falling than the 

coulomb potential. In the presented four body formalisms, the dynamic electron correlations are 

automatically included through the perturbation potentials. However more experimental data 

covering higher energies is needed for the above mentioned interactions both for the 

development of refined theory and their applications in other branches of physics. 
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FIG. 1. Total cross sections (in cm2) as a function of the incident energy E (keV) for reaction H + 

H(1s) → −H  + H+. 

Theory: solid line, 1: present results (prior form of BCCIS-4B); dotted line, 2: present results 

(post form of BCCIS-4B); dashed line, 3: CB1-4B results of Mancev [10]; dash-dotted line, 4: 

CIS-HF results of Banyard and Shirtcliffe [12]; dash-dot-dotted line, 5: CDW-HF results of 

Moore and Banyard [29]; open circle, first Born results of Mapleton [30]; open square, couple 

state results of Wang et al [31]. 

Experiments: ●, results of McClure [26]; ■, results of Schryber [27]; ▲, results of Hill et al [28]. 
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FIG. 2. Total cross sections (in cm2) as a function of the incident energy E (keV/amu) for 

reaction He+ + He+ → He + He2+. 

Theory: solid line, 1: present results (prior form of BCCIS-4B); dotted line, 2: present results 

(post form of BCCIS-4B); dashed line, 3: prior form of CDW-4B results of Mancev [19]; dash-

dotted line, 4: post form of CB1-4B results of Mancev [19].  

Experiments: ■, results of Murphy et al [34]; ●, results of Melchert et al [35]; ▲, results of 

Schmidt-Bocking and Dorner [36] (data taken from Mancev [10] ). 
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FIG. 3. Total cross sections (in cm2) as a function of the incident energy E (keV) for reaction He+ 

+ H(1s) → He + H+. 

Theory: solid line, 1: present results (prior form of BCCIS-4B); dotted line, 2: present results 

(post form of BCCIS-4B); dashed line, 3: CDW-4B results of Mancev [18]; open square, CTMC 

results of Becker and MacKellar [13]; open circle, CB1-4B results of Mancev [10]. 

Experiments: ▲, results of Olson et al [7]; ▼, results of Shah and Gilbody [37]; ●, results of 

Phaneuf et al [38]; ■, results of Hvelplund and Andersen [39]; 
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FIG. 4. Total cross sections (in cm2) as a function of the incident energy E ( keV/amu ) for 

reaction Li2+ + H(1s) → Li+ + H+. 

Theory: solid line, 1: present results (prior form of BCCIS-4B); dotted line, 2: present results 

(post form of BCCIS-4B); dashed line, 3: prior form of CDW-4B results of Mancev [13]; dash-

dotted line, 4: post form of CB1-4B results of Mancev [19];  open square, BCCIS-3B results of 

Purkait [6]; open triangle, CTMC results of Purkait [6]; open circle, results of Eichler et al [4]. 

Experiments: ■, results of Shah et al [40]. 
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